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Numerical investigation of Western current
intensification in wind-driven ocean model

In the context of Computational Fluid Dynamics Project supervised by A.Venaille
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INTRODUCTION

Western boundary currents, such as
the Gulf Stream in the North Atlantic
and the Kuroshio in the North Pacific,
are among the most striking large-scale
features of the world’s oceans. These
narrow, swift currents channel immense
quantities of heat, salt, and momen-
tum, making them crucial drivers of both
regional and global ocean circulation.
Their pronounced intensification along
the western boundaries of ocean basins,
a phenomenon known as western inten-
sification, has attracted considerable at-
tention since the mid-twentieth century.

The foundational theoretical expla-
nations for western intensification are
often traced to the seminal works of
Stommel (1948) and Munk (1950). In
Stommel’s model, the essential balance
is established among the β-effect (lati-
tudinal variation of the Coriolis param-
eter), an idealized wind stress forcing,

and a linear frictional term. By includ-
ing the β-effect in a simple, rectangu-
lar ocean basin, Stommel demonstrated
how a poleward intensification of the
boundary current necessarily emerged on
the western side. Stommel’s treatment
introduced the concept of a “Stommel
boundary layer,” where frictional and β-
related effects interact to create a nar-
row, intensified current region.

Shortly thereafter, Munk (1950)
proposed an alternative view in which vis-
cous dissipation (parameterized through
eddy viscosity) is the dominant frictional
mechanism, rather than linear drag. De-
spite the contrasting frictional closures
(linear in Stommel’s model versus har-
monic viscosity in Munk’s), both models
capture the essential physics that leads
to boundary current intensification on
the western edges of subtropical gyres.

Figure 1.1 – Atlantic Ocean surface merid-
ional velocity (v), the western intensifica-
tion near west coastlines is clearly visible
with the main GulfStream structure.

Contemporary understanding em-
braces these complications and recog-
nizes that the intensification process is
not merely a simple interplay of β-
induced Rossby waves and linear fric-
tion but also involves robust mesoscale
eddy activity, inertial effects, and large-
scale atmospheric variability. Current
high-resolution observations and numer-
ical simulations confirm the persistent
role of the western boundary in concen-
trating kinetic energy and heat trans-
port, underscoring the remarkable pre-

dictive power of Stommel’s and Munk’s
theoretical underpinnings.

THEORETICAL BACKGROUND

Munk, in 1950, proposed a model
for western boundary current intensifica-
tion in the ocean, neglecting the nonlin-
ear terms in the full development. This
assumption was made considering that
nonlinear terms primarily affect the sym-
metry of the solutions and do not sig-
nificantly alter the global behavior of
western intensification. He successfully
derived western intensification with this
simplified approach but was unable to
explain northern intensification and the
transient processes generally observed.

I. Munk-Stommel Model

A. Nonlinear Formulation

To derive the Munk-Stommel model,
we will use a homogeneous ocean model
governed by shallow water equations.
Many other approaches can be used
(e.g., vertical integration of the plan-
etary geostrophic equations for Boussi-
nesq fluids or quasi-geostrophic formula-
tion), but these are beyond the scope of
this study. In this context, the potential
vorticity is expressed as:

D

Dt

(
f + ζ

h

)
=
F

h

(2.1)

where f is the Coriolis parameter, and F
is the curl of the stresses applied to the
fluid. Under the beta-plane approxima-
tion:

f = f0 + βy

and considering a flat bottom and a rigid
lid (with Dh

Dt
negligible over horizontal

variations), we introduce Ψ, the stream
function, satisfying:

v = ∂xΨ, u = −∂yΨ, ζ = ∆Ψ

Thus, using the Jacobian J (Ψ, ζ) as
the advective derivative, we obtain:

∂ζ

∂t
+ J (Ψ, ζ) + β ∂Ψ

∂x
= F

(2.2)

1 Andrea Combette

https://github.com/Chatr0uge/lecture_notes_CSP


CHAPTER 2. THEORETICAL BACKGROUND Master SdM ENS | ENSL

Next, we focus on deriving the F term.
In this model, stresses are assumed to
act only at the top and bottom of the
ocean. The bottom limitation represents
the main thermocline boundary (Munk),
which must be considered when model-
ing specific phenomena.

At the top, the stress is expressed as
wind stress (τx , τy ), which is assumed to
be a known function in this study. At the
bottom, various approaches can be used:
in the Stommel approach, stress is con-
sidered a linear function of velocity, while
in the Munk approach, it is modeled as
harmonic viscosity. Here, we consider a
combination of both:

F = ∇× τ − r∆Ψ+ A∆ζ
(2.3)

This results in the following formulation
of the model:

∂ζ

∂t
+J (Ψ, ζ)+β ∂Ψ

∂x
= ∇×τ−r∆Ψ+A∆ζ

(2.4)

B. Adimensionalization

To minimize the number of parame-
ters, we introduce the following scaling
(Carrier and Robinson):

t̂ → βLt, x̂ → x
L
, Ψ̂→ β

|τ |Ψ

where |τ | is the mean magnitude of
the rotational wind stress. This scal-
ing is derived from the consideration of a
"Sverdrupian" leading balance (Wallis),
i.e., the equilibrium between the Cori-
olis force and the wind stress in the
basin’s interior, where nonlinear terms
can be neglected (to be discussed fur-
ther), resulting in steady states. Under
this rescaling, the leading-order terms in
the interior basin are of unity order:

β
∂x

∂Ψ
∼ ∇×z τ

Using this scaling, we rewrite (2.4),
omitting the hats, as:

∂ζ

∂t
+RJ (Ψ, ζ) + ∂Ψ

∂x

= ∇×z τ − ϵS∆Ψ+ ϵM∆ζ
(2.5)

where the parameters are defined as:

R = |τ |
β2L3

, ϵS =
r

βL
, ϵM =

A

βL3

If L is comparable to the Earth’s radius,
R represents the Rossby number for this

problem, with the Sverdrupian velocity
U = |τ |

βL2
. The Reynolds number can

then be expressed as Re = UL
A

. In the
viscous boundary layer, the speed scaling
is expected to follow Re = Vδ

A
, where δ

is the width of the viscous layer.

II. Steady-State Study

As previously mentioned, for rela-
tively low Rossby numbers (on the order
of ...), a steady state can be expected,
consistent with the Sverdrupian balance.
This state satisfies the following relation:

J (Ψ, ζ) + ∂Ψ
∂x
= ∇×z τ
− ϵS∆Ψ+ ϵM∆ζ

(2.6)

A. Linear System Study

In the case of a small Rossby num-
ber, the advection term can be ne-
glected, and the system linearized. This
results in:

∂Ψ

∂x
= ∇×z τ − ϵS∆Ψ+ ϵM∆ζ

(2.7)

For now, we focus on the simplest Stom-
mel problem by setting ϵM = 0. Al-
though this equation can be solved ana-
lytically, such solutions often obscure the
physical processes behind their deriva-
tion. A practical approach is to assume
that friction terms are negligible away
from the boundary, splitting the solution
into two components: the Sverdrupian
interior and the boundary layer, where
friction becomes significant. This leads
to the following formulation:Ψ = ΨI +ΨB∂ΨI

∂x
= ∇×z τ

∂Ψ
∂x
= −ϵS∆ΨI +∇×z τ

The goal is to compute the separate so-
lutions and match them asymptotically.
This derivation was previously performed
by (Wallis) for simple harmonic wind
stress and will not be detailed here. It re-
sults in an exponentially decaying bound-
ary solution ΨB. Using the canonical
wind stress ∇×z τ = − sin(y) sin(x), the
solutions are:{

ΨB = −2 sin(y)e−
x
ϵS

ΨI = (1 + cos(x)) sin(y)

(2.8)

The total solution is then:

ΨS =
(
1 + cos x − 2e−

x
ϵS

)
sin(y)

(2.9)

One can observe that this solution
does not satisfy all the constraints im-
posed but does verify, for ϵS ≪ 1, that
Ψ(x = 0, π) ≈ 0. Despite this re-
laxation of constraints, the model pro-
vides a way to handle the boundary layer,
which scales as:

δ̂S = ϵS/π, δS =
r

β

It is worth noting that the basin length
here is not L but πL. From this, we
conclude that if the Gulf Stream origi-
nates from the western boundary layer,
we should have ϵ/π ≈ 0.01 [Veronis,
part 1], given the same scaling between
the Gulf Stream width and the size of
the Atlantic Ocean.

Munk’s model offers a more nuanced
approach when applying the boundary
layer method (balancing the friction term
with the beta term) and allows handling
no-slip and no-normal boundary condi-
tions. However, the precision gained
from the no-slip condition may be irrel-
evant, as it leads to shear flow and in-
stability when considering nonlinear pro-
cesses. Its derivation is not addressed
here. Instead, we will focus on the char-
acteristic western boundary length scale
identified in this study:

δ̂M = ϵ
1
3
M/π, δM =

(
A

β

) 1
3

For geostrophic typical values of

β = 2e−13cm−1sec−1, L = 1e8cm

we obtain A ∼ 107cm2sec−1. In the
case of the Atlantic Ocean, the convec-
tive term cannot be neglected, leading
to significant nonlinearity. Indeed, per-
turbative methods (see the next section)
are known to fail for this range of viscos-
ity values [Stommel, Munk], necessitat-
ing full numerical simulations.

One could be motivated to study the
"matching case" [1]:

ϵ = ϵS = ϵ
1
3
M

This condition results in boundary lay-
ers of the same size in both models
(see fig.). However, one might question
whether this constraint leads to diver-
gent dynamics. Specifically, there is no
guarantee that the boundary layer speed
will scale similarly in both models. Bryn
proposed that the boundary layer speed
in the Munk model scales inversely with
the boundary layer size, based on the as-
sumption of a constant Reynolds number
in the flow:

Re =
VbδM
η
=
UL

η
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where U is the interior Sverdrupian ve-
locity. From this, we infer that even
for moderately nonlinear flows, the ki-
netic energy K depends primarily on the
boundary layer behavior, as the interior
flow is assumed to remain unchanged.
Hence, it should scale as K ∝ δ−1M ,
since the integration is over the bound-
ary layer. This approach provides a quick
estimate for K in the Munk model but is
not applicable to the Stommel model.

Indeed, using the same balance be-
tween friction and advection in the
Stommel model yields:

Re⋆ =
U

rL

This results in lower speeds in the bound-
ary layer, which is inconsistent with our
case. A more rigorous approach involves
integrating v 2 in the boundary layer using
∂y (2.8)

1 for the Stommel model. This
yields:

KS =
∫ L

0

∫ δS

0

|∂yΨB|2

=
π

2ϵS

[
1− e−2

δ
ϵS

]
Notably, onlyΨB in the boundary is used.
This can be justified by observing that v 2B
introduces an ϵ−2S dependency, whereas
considering the full ΨS solution would
add only an ϵ−1S dependency, which is
negligible in this study range. For the
Munk model scaling, we use the follow-
ing western boundary solution under no-
slip conditions:

ΨMB =sin(y)e
−x/2ϵ1/3M

[
cos

(√
3x

2ϵ
1
3
M

)
+

1− 2ϵ
M
1
3√

3
sin

(√
3x

2ϵ
1
3
M

)]
(2.10)

This yields the following kinetic energy:

KM = π

2ϵ
1
3
M

[
5

4
− e−1−

e−1

4

(
cos
√
3 +
√
3 sin

√
3
)]

(2.11)

It is evident that the scaling aligns
with the prediction from Reynolds ar-
guments. Hence, even though KS ∝
KM ∝ δ−1SM, the kinetic energy in the
boundary layer (the main contributor in
low-nonlinearity scenarios) is nearly three
times higher in the Munk model, leading

to higher transport for the same bound-
ary layer size.

We emphasize that the boundary
conditions for the Munk model dif-
fer from those used in the Stommel
model, which could influence the scal-
ing. This imprecision is significant but
not overly concerning, as boundary con-
ditions vary across oceans; yet, the same
phenomenon is observed. Additionally,
only the boundary solution, the leading
order in the boundary layer, was consid-
ered. However, Ψ is a combination of
Sverdrupian and boundary stream func-
tions, which should influence the kinetic
energy ratio. This significantly impacts
the dynamics studied, as transport in the
Munk model will be higher for the same
boundary layer width.

B. Non-linear system study

Assuming non-linear term to be suf-
ficiently small, we can applly the so-
called perturbative methods by develop-
ing the solution in a power series of the
Rossby number R. This method pro-
vides us a qualitative understanding of
the non-linear term effect on northern
currents intensification in the boundary
layer, and how the solution is distorted
by the convective term. The derivation
has already been done by [Veronis], and
briefly is briefly explained in this section.
Let’s consider the following development
of the stream function :

Ψ = Ψ0 +RΨ1 + · · ·

At the first order injecting this develop-
ment in the linear system (2.7) we get

∂Ψ1
∂x
+ ϵS∆Ψ1 = J (Ψ0, ζ0)

(2.12)

substituting the expression of Ψ0 (2.14),
and applying a boundary layer stretching
(see Wallis for a simple application on a
harmonic wind stress), we finally obtain
a boundary solution for (2.12)9, recalling
ξ = x

ϵScal
:

ΨB1 = −
2ξR
ϵ2S
sin(2y)e−ξ

(2.13)

Furthermore, As the main contribu-
tion of the non-linearity has to be in the
boundary layer (where the gradient of
speed is the higher), we can just add
this non-linear contribution to the pre-
vious Stommel boundary solution, lead-
ing providing a northern intensification of
the streamfunction, and so a increasing
velocity near the northern boundary.:

Ψ = ΨS − 2ξR
ϵ2S
sin(2y)e−ξ

(2.14)

Figure 2.1 – At the top, contour plot
of the linear stommel solution ΨS

l
, with

ϵS = 0.05. At the bottom, the perturbed
stommel solution at the bottom : ΨS

nl
for

ϵS = 0.05 and R = 0.005. Streamline are
represented in black plain lines

The form of 2.14 will lead to a pole-
wards shift of teh center of gyre with a
longitude wise antysymetric structure of
the streamfunction in the boundary layer
(see 2.1). If we take a quick glance at
the ratio of the norm :∣∣∣ΨB1

ΨSB

∣∣∣ = R
ϵ2S
, x = δS

1Since Ψ vanishes at the boundary, there is no normal flow.
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This suggest the existence of an
inertial boundary layer (Charnet layer),
where the particles inertia is balanced by
the coriolis force.

δI =
(
U

β

) 1
2

∝ R 1
2

C. Inertial layer study

When this length scale is the same
order that the frictionnal boundary layer,
it will strengthend the dynamic at stake
with a northward advection in the bound-
ary layer (where the transport is the
higher) of the gyre. For non-linear
regime this advection will cause the wes-
tard boundary layer to reach the north
boundary causing oscillations in the vor-
ticity (see fig 2.2).

Indeed, one can notice that the
bonudary layer act as a negative vorticity
damping layer, in the non-linear regime
this damping will act longer because of
inertia, causing a positive vorticity zone.

Figure 2.2 – Western boundary layer vor-
ticity plot for the Munk model using R =
8e−3 and ϵM = 1e − 3, with underlying
stream lines

One can see that as the conse-
quences of vorticity conservation when
we advect a parcel of fluid:∫

D
v · ∇ζ dD =

∫
D
∇(vζ)dD

=

∫
∂D
ζv · n d∂D

Since the stream function Ψ vanish on
the boundaries, there is no normal flow
we finally get :∫

D
v · ∇ζdD = 0

(2.15)

The negative vorticity zone being in-
creased with the northward advection,
we need a positive vorticity zone to com-
pensate. The same property can be un-
earthed for the kinetic energy K as we
will see further.

To tackle non-linear and highly non-
linear regime correctly we must use nu-
merical methods. One can propose to
study the steady non-linear regime us-
ing newton solver, but it’s not clear
that the dynamic will always reach a
steady states, veronis obtained accu-
rately steady dynamic even for highly
non-linear case but this was only re-
stricted to the Stommel model. Bryan
when solving numerically the non lin-
ear model unearthed some unsetady dy-
namic, that could be related to the dis-
cretization limitations.

Hence to be very general we will use
a time dependant approach starting from
rest.

NUMERICAL IMPLEMENTATION

I. finite difference formulation

To solve the numerically 2.5, we dis-
cretized a rectangular bassin D given a
regular N−1 gridded interval with spac-
ing :

∆x = ∆y =
π

N − 1

We studied the no-normal flow
(ΨD = 0) with free slip boundary con-
dition (this prevents any shear flows in-
stabilities from no-slip consideration).

In the interior we computed the
spatial derivatives using a simple or-
der 2 centered difference method, this
ensure stability for sufficiently smooth
fields(NEED to filter frequencies) :

∂xΨ =
Ψi+1,j −Ψi−1,j

2∆x

For the time dependancy we used the
same leapfrog-like scheme :

∂tΨ =
Ψn+1 −Ψn−1
2∆t

This temporal scheme can introduce
introduce instability at high frequency,
1/2∆t that can be excite by simple
roundings errors (some suggests to in-
troduce some filtering (Robert-Asselin),
or damping to avoid this problem. In
the stommel model the drag is a quite
harsh damping that act equally on all fre-
quency, in addition to that we can show
that using leapfrog scheme the dragging
term leads to an unstable exponentially
growing unstable mode.

Indeed let’s consider the following

discretization of (2.5).

ζn+1i j − ζn+1i j
2∆t

+RJ nij =− ϵSζnij + ϵMLζnij
+∇×z τ

(3.1)

using the foloowing expression for L and
J :

Lζi j =
ζi+1,j + ζi−1,j + ζi ,j+1 + ζi ,j−1 − 4ζi j

∆x2

J nij =
[
(Ψni+1,j+1 −Ψni−1,j+1)ζni,j+1

− (Ψni+1,j−1 −Ψni−1,j−1)ζni,j−1
]

−
[
(Ψni+1,j+1 −Ψni+1,j−1)ζni+1,j

− (Ψni−1,j+1 −Ψni−1,j−1)ζni−1,j
]

A. Jacobian formulation

(i , j)

ζi−1,j ζi+1,j

ζi ,j+1

ζi ,j−1

Ψi−1,j+1 Ψi+1,j+1

Ψi+1,j−1Ψi−1,j−1

∇1

∇3

∇2

∇4

Figure 3.1 – Illustration of the Jacobian
computation for the vorticity equation.
We sketched in blue the points used for
the streamfunction and in red for the vor-
ticity

For the simplicity of the next study
we will write this jacobian in this re-
ducted form :

Ji j = ∇1i jζi ,j+1 −∇2i jζi ,j−1
−∇3i jζi+1,j +∇4i jζi−1,j

(3.2)

This Arakawa like Jacobian form en-
sure the vorticity and kinetic conservatin
through advection [2–4]. We already
studied that for the vorticity case (eq.
2.15). For the kinetic energy we can
consider the following integration :
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2K =
∫
D
|v |2

=

∫
D
|∇TΨ|2 =

∫
D
|∇Ψ|2

=

∫
D
∇ · (Ψ∇⃗Ψ)︸ ︷︷ ︸

0 from Ostrogradski theorem

−
∫
D
Ψ∆Ψ

= −
∫
D
Ψζ

We can then show very easily the con-
servation of the kinetic energy through
advection noticing that : v · ∇Ψ = 0,
using the same arguments as before:∫

D
v · ∇(Ψζ) = 0

(3.3)

To show that equations (2.15, 3.3) are
verified for this discretized Jacobian :∑

i j

Ji j = 0 ,
∑
i j

Ψi jJi j = 0

The first equality is trivially provided
noticing that the ∇1i ,j ,∇2i ,j+2 terms can-
cel each other as well as the ∇3i ,j ,∇4i+2,j
terms. For the second equality this is
a little but more tricky and we have to
notice that the cancellation will involve
four terms :

Ψi ,j∇1i j +Ψi ,j+2∇2i ,j+2 +Ψi−1,j+1∇3i−1,j+1
+Ψi+1,j+1∇4i+1,j+1 = 0

This implicit implies that our grid grise
has to be divisible by 4.

B. Friction stability

The von-Neumann analysis leads to
the consideration of the following har-
monic wave functions :

ζ = Aρe ikx , ρ = e iwt

If we restrict the study to the friction
terms we get :

ρ2 + 2∆tϵMρ− 1 = 0
(3.4)

From the same reasoning as befire (en-
capsulating under the nabla) This will
lead to one unstable mode whatever the
ρ we choose :

ρ = ∆tϵM +
√
(∆tϵM)2 + 1 < −1

One way to adress this issue we can sim-
ply consider the previous time step for
the friction term (One can also use the

same time centered scheme for the fric-
tion term, VERONIS). This will simply
give :

ρ =
√
1− ϵM∆t < 1

ζnεS
ζn−1εS

t →

K
→

Figure 3.2 – Kinetic Energy Overview of
the instability induced by the central dif-
ferences by using a centered friction term
detailed in the previous section. This is
not greatly noticeable for reasonable value
of the ϵS and R

The stability will then be ensure for
the friction term at least. This final con-
sideration leads to our numerical scheme

ζn+1i j − ζn+1i j
2∆t

+RJ nij =− ϵSζn−1i j + ϵMLζnij
+∇×z τ

(3.5)

C. CFL-like considerations

The harmonic viscosity we consider
in the Munk model will canonically lead
to the following restriction on the time
stepping size :

∆t <
∆x2

4ϵM

For the Stommel term the restriction
is way more relaxed, since the term is not
a diffusion term but a drag term. We can
then consider the following restriction :

∆t <
1

ϵS

Regarding the advection term, it will
classically leads to the following CFL
conditions :

∆t <
∆x

2max|v |

RESULTS & DISCUSSION
In this chapter we will exploit the

simulations results for the stommel and
the munk model in a wide range of pa-
rameter. We will verify the scaling of the
boundary layer and of the Kinetic energy,
and study the non-linear regime in both
model for comparable size of the bound-
ary layer.

I. Boundary layer

As we depicted previously Stommel
and Munk model do not leads to the
same dymanics for the matching case :

ϵ
1
3
M = ϵS

However one can compare if the bound-
ary layer width is preserved by the numer-
ical integration. This is done by com-
paring the normalized meridional velocity
profiles in the 4.1 using a the linear case
R = 0.

δ1 δ2 π/6

0

1 steady 1

steady 2

Stommel 1

Munk 1

Stommel 2

Munk 2

x

v

Figure 4.1 – Normalized meridional aver-
age velocity profile after 4000 iterations
(corresponding to 200(βL)−1s) for ϵ1/3M =

ϵS = 0.03 or the black points and w
ϵ
1/3
M = ϵS = 0.1 for the blue points. Both

simulations are tackled using R = 0 with
free slip boundary conditions. The steady
solutions refers to the previously calculated
linear solutions for the stommel model (eq.
2.8).

One can see that the numerical
scheme converge quite well to the steady
solutions. With quite a good agree-
ment between the Munk and the stom-
mel boundary layer width. One notice
that for the Munk case the bonudary
layer seems wider for both sets of param-
eters, which will leads to higher trans-
port concomitantly with the higher ki-
netic energy in the boundary layer (see
subsection A). We will show further that
the width of the boundary layer follows
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the scaling we predicted δS ∝ ϵS and
δM ∝ ϵ1/3M in the next section.

II. Dynamics

The study of the dynamic of the two
model revealed interestings points about
the transcient aspect of the solutions,
the difference of boundary transport be-
tweeen the two models. Some investiga-
tions have been done regarding the tran-
scient aspect of the solutions in Veronis
and Bryan works.

0

5

R =8.7e-04

Munk

50 150
0

5

Stommel

0.014 0.016 0.018 0.020

t →

K
→

K
→

δ

Figure 4.2 – Kinetic Energy plot for the
several boundary layer size in the matching
case : ϵ1/3M = ϵS . The maximum Reynolds
number we reached is Re ∼ 30, as op-
posed to bryan who reached Re ∼ 60.
However one can note that our boundary
layer is relatively π times smaller which cor-
responds in the Byran case to Re ∼ 90

However, they do not lead to the
same results. Indeed, Veronis who used
the Stommel model in his study ex-
plained that his solutinons did not un-
earth trasncient behavior as opposed to
Bryan work. He justified that saying that
Bryan used a no Slip boundary condi-
tion at the border which implied a strong
inflection point and shear-flow instabili-

ties that can be responsible for this tran-
scient aspect. However, Bryan explains
this as free rossby waves propagation in
the rectangular bassin and demonstrate
this with assurance.

In our simulations we observed this
transcient process in both, stommel and
Munk Model. However we will see that in
the stommel model the trasncient behav-
ior vanish rapidely. Whereas in the Munk
model the transcient behavior is clearly
present. This is a quite interesting point
that we will discuss further. And seems
to not be related to the numerical imple-
mentation as discussed by Veronis.

A. Rossby solutions

Neglecting the friction and the ad-
vection (2.5) becomes simply :

∂tζ + ∂xΨ = 0

From this very simple equation we can
derive the following free rossby wave
adimensionalized dispersion relation in
the fourrier space using normal fourrier
modes :

Ψ = Ψ0e
i(kx x+ky y−ωt)

(4.1)

The dispersion relation follows.

ω =
kx

k2x + k
2
y

(4.2)

Bryan proposed a cleaner approach
that leads to truncation of an initial
guess in slighly more complicated disper-
sion relation. If we add the friction term
to the equation we will derive the follow-
ing dispersion relation for the Munk case
:

∂tζ + ∂xΨ = 0

ω =
kx

k2x + k
2
y

+ iϵM(k
2
x + k

2
y )

(4.3)

For the Stommel case the dispersion re-
lation will be :

ω =
kx

k2x + k
2
y

+ iϵS

(4.4)

From this simple study one can see that
the friction in the Stommel case implies a
damping of transcient solutions. Which
is not always the case in the Munk case,
indeed nothing ensures that k ∈ iR, on
the contrary it should have a real part.

a) Munk damping study

This damping is evident in the
fig.4.2, where the same modes are
quickly damped in stommel model and
not in the Munk model. The period
of the wave is of the order of T ∼
40(βL)−1s which corresponds exactly
to the period Bryan unearthed T ∼
44(βL)−1s

0 70
t →

K
→

(a) – Stabilized Kinetic energy plot time evolu-
tion

(b) – Steady state Ψ contour plots taken at last
time step

Figure 4.3 – Simulations plots for ϵM =

6e − 3 and R = 8e − 3. Corresponding
to δ ≈= 0.1, which is not feasible in the
reality

Here we discussed a interesting case
with δM = 0.01, in order to match the
characteristic Gulf stream width. How-
ever, we will show further that, in ad-
dition to add numerical complexity to
have a well defined boundary layer, this
is crudely limiting the rossby number R.
Indeed for the same boundary layer size
if we increase the rossby number higher
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than Re ∼ 60 the boundary layer fails to
damp efficiently the flows and the exis-
tence of a steady state is seriously com-
promised (as we can see in the fig.4.3).

However if we allow the boundary
layer to be bigger in the Munk model we
can deal with bigger northern intensifica-
tion phenomena. That’s actually match-
ing the Stommel dynamics. In this case
it appears that the Rossby free waves can
be damped by the Munk friction term
(see fig.??).

This damping in the Munk problem
comes along with other stability prob-
lem that are well known for the Munk
problem [3, 5, 6]. It is well known that
Munk dynamics presents some instabil-
ity as the western boundary depending
on the Reynold number.

The stability range is assume to be
between 25-100 for most of the problem.
Here we can show that it is really hard
to obtain stable results near Re ∼ 60,
Bryan attributes that to unsufficient dis-
cretized boundary layer size leading to
not enough damped dynamic and diver-
gent behavior.

b) Munk divergence study

This idea is quite reasonable how-
ever, we replicate the same scheme as
bryan and pushed the discretization fur-
ther and we still obtained unstable so-
lution. Bryan used a [1,1] domain with
N = 40 points, we used a π times do-
main (the boundary layer width will also
be multipled by π) and N = 128 points,
and we still not converge to a steady os-
cillatory state as we can see in fig.4.4.

50 150

Re = 70

t →

K
→

Figure 4.4 – Energy time evolution for
Re = 75, using ϵM = 1.2e−5 and R =
9e−4

To possibly understand and strength-
ened, complete the Bryan argumenta-
tion, one can ask if this instability is only
numerically originated and if it is not a
physical expected results.

c) Munk instability study

In the following section we will try to
explain how this instability occures in the
Munk model using the spectral analysis
we did before. Indeed this special dis-
persion relation we obtained in the lin-
ear Munk case without carrying about
the advection term can be pushed fur-
ther than it can be possibly not dissipa-
tive. For this we propose a study of Imω,
depending on kx .

Figure 4.5 – Imaginary Frequency response
contour plot over the kx for two different
ky . On the left : we used a purely real
ky = 1. On the right : we used a com-
plex ky = 30(1 + i). The black plain line
contour stands for the 0 level, hence it is
the stability threshold of our model. The
dashed contour line are negative contour.

In this study we will assume the fol-
lowing points. First the Im(kx) ∈ R−.
This follows simply from the fact that
there is no exponentially growing spatial
scale in our study. Secondly, we will as-
sume that at the begiining of our study
the ky wave vector is relatively small
indeed the smallest length scale gener-
ated by our study are located in near the
boundary layer as dicussed in the positive
vorticity section, and at the boundaries
the y-length scale are expected to be
quite important due to our square box.

The action of the advection term is
then to mix the x and y length scale
leading to increasing real part of ky with
time. This is quite contradictory with
a 2D geometry where an inverse energy
cascade should favorites big scales, how-
ever as explained by [7] as long as the
flow is not free and limited by a boundary
it will create small scale proportionally to
the Re.

In addition to that mixing of small
scaled by the advective term, one could
remarks that the unstability occurs when

the main flow structures is reaching the
north limit of our domain, i.e when the
boundary layer spread on the north side.
This will results in the considerations of
a Im(ky ) ̸= 0, indeed a damping effect as
to be considered in the north boundary
layer.

This will finally result in presence of
high valued complex ky wave vector. To
understand what is the impact of this
ky values on the spectrum, we plotted
Im(w) for two interesting ky values. Sta-
bility is ensure at positie values of Im(w)
and the instability occured for negative
values.

First, we recover the Bryan numeri-
cal constraints for all cases : the bound-
ary layer needs to be sufficiently resolved.
Indeed, let’s say the boundary layer is of
the order :

δM = ϵ
1
3
M ∼ 6.10−2

The associated imaginary ky will be of
the order of 2π

δM
. If our resolution is not

enough we will not provide sufficiently
high kx wave number leading to negative
Im(w) and instability growing. We re-
cover the fact that if the boundary layer
is too thin to be numerically represented
the friction is not enough important to
dissipate wind stress.

Figure 4.6 – Contour plot of Ψ with
streamlines in plain black, for a Re = 60
at t = 100(βL)−1s with ϵM = 1.5e−5.
Small scales structures appear in both y
and x direction with a strong eastward
boundary layer flow at the northern bound-
ary with a typical kx ∼ 1−10, correspond-
ing to an unstable mode.

Furthermore the more interesting
thing we have to notice, is an other
instability zone that is occuring when
the boundary layer span over the north
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boundary, leading to negative Im(x) for
a all span of big scales, corresponding
to eastward traveling structure in the
northern newly created viscous boundary.
This eastward intensification of the flow
is clearly depicted in the fig.4.6.

This unstable mode is not numeri-
cally originated and do not leads to a
stable steady flow, indeed as long as the
wind stress is apply the eastward bound-
ary layer will still exist and will continue
to nucleate this kind of northern east-
ward moving structures.

For the following part we propose to
delve into the hypothesis we made to ex-
plain this eastward intensification at the
northern boundary for the Munk model.
First we assumed that small scales have
an increasing presence due to the bound-
ary layer inversely proportionally to Re.
Then we sum up the action of the ad-
vective term, by a mixing in y and x di-
rection of small scale. And then we fi-
nally suppose that the westward bound-
ary layer will progressively go northward,
leading to complex ky .

The decreasing scales in the bound-
ary layer is a results of an equilibrium be-
tween the viscous force and the advec-
tive force. This will lead to :

v∂xv ∼ ϵM∂xxv
v 2

δ
∼ ϵM v

δ2

δ ∼ L
Re

Here we can see that the domain
should be limited so that small scales can
appear in a 2d flow. At planetery scale it
is generally admit that the forward en-
ergy cascade is mediated by planetary
vorticity gradients. This is a charcteris-
tic from a barotropic flow, but if we con-
sider a more baroclinic flow this inverse
cascade should vanish due to the 3d ge-
ometry introduced. This small scales
are then distributed over both directions
as we can see in the fig.4.8 where we
computed the power spectrum over the
whole boundary layer in the y direction
limited to the nyquist frequency com-
puted with an appropriate Hann window.

The power spetrum spread with the
Re and the time as expected(4.7, 4.8).
In addition to that one could notice that
we have an increasing contribution for
high Re. This should be related to the
fig.4.9, where we emphasize the north-
ward concentration of the boundary layer
leading to small scales.

101 102
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10−9

10−7

10−5

10−3

10−1

Energy injection

δ

0.0002 0.0004 0.0006 0.0008 0.0010

Re

kz

P
(k
z
)

Figure 4.7 – Re dependant power spectrum
fo with ϵM = 1.5e−5, average over the
500 last time steps. The black plain line
stand for a power law of k−7.5z
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Figure 4.8 – time dependant power spec-
trum for Re = 60, with ϵM = 1.5e−5.
The black plain line stand for a power law
of k−7.5z

This Spetrum study unveiled an in-
teresting energy cascade way stronger
than the Kolmogorov one k−

5
3 , that

seems to be affected by an injection
of energy of typical scale 1

δM
however

we recover for high frequency the nat-
ural energy cascade. This is in agree-
ment with the Veronis argument [3] stat-
ing the we cannot generate length scale
smaller than the boundary layer.

0 1 2 3

0.00

0.01

0.02

0.03

0.04

δM

Northward intensification

0.0002 0.0004 0.0006 0.0008 0.0010

Re

x

δ

Figure 4.9 – Western Boundary layer width
evolution with the Reynolds number with
ϵM = 1.2e−5. The black dotted line
stands for the theoritical width of the
boundary layer.

To put it in a nutshell this instability
study explains why there is no assurance
to have a steady states if we study strong
convective flow.

We observe the same kind of behav-
ior for very strong convective flow for the
stommel model , however in our simula-
tions it is always converging. We plotted
bellow the frqency response of the Stom-
mel model , and it is easy to understand
from our previous argumentation that in
the same conditions this model will lead
to stable solutions.

Figure 4.10 – Imaginary Frequency re-
sponse contour plot over the kx for two
different ky . On the left : we used a
purely real ky = 1. On the right : we used
a complex ky = 30(1+ i). The black plain
line contour stands for the 0 level, hence it
is the stability threshold of our model. The
dashed contour line are negative contour.
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From now when studying advec-
tive non-linear regime we will focus on
the Stommel model. Indeed it allows
to reach realistic boundary layer size,
whereas to study Munk model we need
to introduce too wide boundary layer
compared to realistic gulf stream width.

B. Low non-linear regime

Figure 4.11 –Ψ contour plots with stream-
lines in both Munk and Stommel case for
two boundary layer width in the non-linear
and linear case

For the low non-linear regime one
has to keep in mind our previous pertur-
bation study with a small rossby number
leading to northern intensification of the
boundary layer where the transport is the
highest. As we can see for the fig.4.11.
We recover the linear perturbed solution
in the Stmmel case. The Munk model
leads to the same northern intensifica-
tion phenomena, however in our figure
Ψ in not average over the rossby period,
so we do not recover the stommel typical
structure. One can notice as predicted
that the boundary transport is bigger in
the Munk case as predicted by our pre-

vious Kinetic study (it is more precisely
study in the fig.4.12 ).

In the context of low non-linear
regime we can see if the scaling for the
kinetic energy over the boundary layer
size is verified for both model ??. We
also recover the fact that kinetic energy
is not affected by the advection, except
for a very small boundary layer where
the model failed to converge properly, for
high R number.

We also recover the fact that for the
same theoritical boundary layer width the
system does not unearthed the same dy-
namics with a factor KM/KS ∼ 2, as-
sessing the theoretical approach we did
previously.

4× 10−2 6× 10−2

2× 104

4× 104

slope=-1

R = 0.0e + 00

R = 8.0e − 04

R = 8.7e − 04

R = 9.3e − 04

R = 1.0e − 03

δ

K

Figure 4.12 – Kinetic Energy over the
boundary layer width for the stommel and
the Munk model. The black plain line
stands for the theoretical scaling δS and
δM

C. High non-linear regime

As explained previously we will fo-
cus in this case to realistic boundary
layer size, and to do so we will need the
stability of the Stommel scheme. We
could have also used the Munk model
with a bigger boundary layer and an rel-
atively small inertial boundary layer, stat-
ing that the boundary layer should be in-
viscid rather than frictious (controlled by
δI).

a) Fofonoff solution

For High non linear regime the as-
symetry we imposed with the frictional
layer is progressively lost. and we re-
cover a east-west symetry characteris-
tic of the Fofonoff solution. Indeed the
strong advection allows a east bound-
ary layer and a fully inertial interior, that
breaks our previous assymptotic match-
ing. This can be traduced by the follow-
ing requirements for the flow :

J (Ψ, ζ + βy) = 0
(4.5)

One can show that for sufficiently lowR,
this leads to the following Ψ solution.
The detailed of the demonstration are
given by [1] and will not be tackled here.
The main ideas are the same as before
with an inertial boundary layer matching
with an inertial interior.

Ψ =U(y − y0)
[
1− e

x
δI − e

x−xE
δI
]
+

U(y0 − yN)e−(yn−y)/δI + Uy0e−y/δI

(4.6)

With δI the previously defined inertial
boundary layer size and xE , yN the east
and north boundary position. This solu-
tion as a very particular east-west sym-
metry that we should emphasize.

This stands as a quite extreme case
of flow were inertial effect are dominant.
Hence, we tested stommel model to see
if it was able to recover this flow prop-
erties at high rossby number, where we
recovers east-west symmetry.

Figure 4.13 – Normalized Stommel model
solution at the bottom and normalized Fo-
fonoff solution at the top.
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We recoverd quite the same kind
of dynamics in the high Rossby number
case as highlighted by Veronis [3], de-
spite the fact that there is no boundary
layer on the west and east side in our
case.

III. Wind stress distribution

Munk proposed to use real wind
stress distribution of wind rather than a
simple negatiive sinusoidal curl.

(a) – Global Atlantic velocity fields with stream-
lines from copernicus program [8]

ΨS

(b) – Global Atlantic solutions for stommel
model with ϵS = 0.02 and R = 9e−4

Figure 4.14 – Realistic wind stress distri-
bution and stommel model solution

As an applying case we done that
using the copernicus programs [8] and
we averageover 20 global measurements
of the wind stress across the 2019 year
in the atlantic ocean. We then applied
this wind stress distribution to our model
with a masked 256 over 256 grid to

tackle finely the coasts boundaries. As
we can see on the fig.4.14b the stom-
mel model presents some interesting be-
havior, where we extract some important
features of the global ocean behavior. In-
deed we recover subtropical anti-cyclonic
and subpolar cyclonic gyres. We also re-
cover the gulf stream western intensifi-
cation and the. However we did not re-
cover a broader and weaker stommel like
internal flow.

CONCLUSION

In this study, we have conducted
a comprehensive numerical investigation
into the phenomenon of western bound-
ary current intensification in wind-driven
ocean models, focusing on the classical
Stommel and Munk models. Our pri-
mary objective was to understand the dy-
namics and scaling laws governing these
currents, particularly in the context of
the Gulf Stream and similar oceanic fea-
tures.

We began by revisiting the theoret-
ical foundations laid by Stommel and
Munk, highlighting the key differences
in their approaches to frictional mech-
anisms and their implications for bound-
ary current intensification. Through a
detailed derivation and adimensionaliza-
tion of the governing equations, we es-
tablished a framework for numerical sim-
ulations.

Our numerical implementation em-
ployed a finite difference formulation
with a leapfrog-like temporal scheme,
ensuring stability and accuracy in the dis-
cretization of the vorticity and stream-
function equations. We carefully ad-
dressed potential numerical instabilities,
particularly those arising from the fric-
tion terms, and validated our approach
against known analytical solutions.

The results of our simulations re-
vealed several important insights:

First we confirmed that the width of
the boundary layer scales as predicted by
the theoretical models, with the Stom-
mel model exhibiting a narrower bound-
ary layer compared to the Munk model.
This difference in boundary layer width
has significant implications for the trans-
port properties of the currents.

Secondly our simulations verified the
theoretical scaling laws for kinetic en-
ergy in both models. We observed that
the Munk model consistently exhibited
higher kinetic energy in the boundary
layer, leading to greater transport for the
same boundary layer width.

We also explored non-linear regime,
we observed a northern intensification of
the boundary layer, consistent with per-
turbative analysis. The Munk model,
however, displayed more pronounced
transient behavior and higher transport,
which we attributed to the differences

in frictional mechanisms. High non lin-
ear regime has also been studied at high
Rossby numbers, the flow dynamics ap-
proached the Fofonoff solution, charac-
terized by an east-west symmetry and a
fully inertial interior.

Overall, our study provides a ro-
bust numerical framework for investigat-
ing western boundary current intensifica-
tion and offers valuable insights into the
complex interplay of frictional, inertial,
and advective processes in ocean dynam-
ics.
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