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Abstract21

Characterization and modeling of biological neural networks
has emerged as a field driving significant advancements in
our understanding of brain function and related pathologies.
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As of today, pharmacological treatments for neurological dis-
orders remain limited, pushing the exploration of promising
alternative approaches such as electroceutics. Recent research
in bioelectronics and neuromorphic engineering have led to the
design of the new generation of neuroprostheses for brain repair.
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However, its complete development requires deeper understand-
ing and expertise in biohybrid interaction. Here, we show a
novel real-time, biomimetic, cost-effective and user-friendly neu-
ral network for bio-hybrid experiments and real-time emulation.
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Our system allows investigation and reproduction of biophysically
detailed neural network dynamics while promoting cost-efficiency, flex-
ibility and ease of use. We showcase the feasibility of conducting
biohybrid experiments using standard biophysical interfaces and various
biological cells as well as real-time emulation of complex models.
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We anticipate our system to be a step towards developing neuromorphic-
based neuroprostheses for bioelectrical therapeutics by enabling com-
munication with biological networks on a similar time scale, facili-
tated by an easy-to-use and accessible embedded real-time system.

39

40

41

42

Our real-time device further enhances its potential
for practical applications in biohybrid experiments.
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1 Introduction46

Millions of people worldwide are affected by neurological disorders that
strongly impair their cognitive and/or motor functions [1]. An increasing num-
ber of technologies and solutions are currently proposed for the treatments
of these diseases, whereas being limited to curbing the progress or managing
symptoms in most cases [2, 3].
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Aside from medical treatment through chemical processes, artificial devices
are developed to improve the quality of life of individuals. To bring neuro-
prosthesis into realization, the behavior of biological neurons as well as its
connection and interaction with artificial neural networks must be consid-
ered. To this end, investigation of the interaction of neuronal cell assemblies is
required to understand and reproduce a specific behavior driven by intrinsic
spontaneous activity. Additionally, long-term replacement of damaged brain
areas with artificial devices implies understanding of their neurophysiological
behaviors.
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In this context, new therapeutic approaches and technologies are needed
both to promote cell survival and regeneration of local circuits [4] and restore
long distance communication between disconnected brain regions and circuits
[5]. Thus, characterization and modeling of biological neural networks [6, 7]
is crucial to develop new generation of neuroprostheses that mimics biological
dynamics and provide adaptive stimulation at biological time scale based on
the principle of electroceutics [8, 9].
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Thanks to the new neuromorphic platforms, performing bio-hybrid exper-
iments is becoming more and more relevant not only for the development of
neuromorphic biomedical devices [8, 9], but also to elucidate the mechanisms
of information processing in the nervous system. Recently, major progress has

review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not certified by peerSeptember 5, 2023. 

this version posted; https://doi.org/10.1101/2023.09.05.556241doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.05.556241


3

been made in the field of neuroprostheses [6, 7] so as neuromorphic devices are
now capable of receiving and processing input while locally or remotely deliver-
ing their output either through electrical, chemical or optogenetic stimulation
[10].

68

69

70

71

72

73

74

75

However, real-time stimulation and processing of biological data using
biomimetic Spiking Neural Network (SNN) is still quite rare [11]. Further-
more, to improve temporal accuracy of the stimulation, complex neuron model
should be implemented in the SNN [12].
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To perform bi-directional bio-hybrid experiments and develop bioelectrical
therapeutic solutions for health care like electroceutic [8, 9, 13], real-time bio-
physics interface and SNN processing are mandatory to ensure interaction at
biological time scale [12, 14]. Most of current solutions for biomimetic SNN
simulations are software-based such as NEURON [15], NEST [16] or Brian2
[17] tools and show significantly high computation time, especially for com-
plex neuron model with synaptic plasticity. Hence, these latter are not suited
for real-time emulation at millisecond time step [18] contrary to hardware-
based SNNs. Another benefit of hardware-based SNNs is the ability to perform
massive parallel simulations to explore space parameters of neuron models.
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In the neuromorphic engineering research, SNNs are designed using two
distinct approaches: bioinspired or biomimetic. The former is widely used for
applications such as computation and artificial intelligence [19] using acceler-
ated time simulation of simple neuron model. The latter uses complex neuron
model operating at biological time scale to simulate neural network dynamics
or/and performing bio-hybrid experiments.
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Hardware-based SNNs are analog or digital. Analog SNN systems [20] show
lower power consumption than digital SNNs [21]. In contrast, digital SNNs are
more flexible thus more suited for prototyping while showing overall quicker
design time hence constituting the best choice for preliminary experiments and
design of new generation of neuroprosthetic. The prominent SNNs hardware
platforms are Merolla [22], BrainScaleS-2 [23], SpiNNaker [24] and Loihi [25].
While some of these systems present mobile versions like [26] for BrainScaleS-
2, they often are not suited for embedded applications. In this manuscript,
we present the capabilities of the real-time biomimetic SNN BiœmuS to emu-
late independent neurons and fully connected networks, showcasing a system
integration promoting versatility and ease of use.
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2 Results107

2.1 Real-time biomimetic SNN108

The low-cost platform targeted is based on a System on Chip (SoC) featuring
both Programmable Logic (PL, i.e. FPGA) and processors in a Processing
System (PS) part. It is capable of running up to 1,024 neurons fully connected,
supporting a total of 220 synapses. It includes on-board monitoring and offers
versatile external communication options such as Ethernet, WiFi, expansion
PMODs (standard peripheral module interface) and a Raspberry Pi header.
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The system is used either for real-time emulation as a low-cost computing unit
or for biohybrid experiments thanks to its versatility (see Figure 1).
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Fig. 1 Overview of system applications. The real-time biomimetic SNN implemented in
hardware is monitored through a Qt-based GUI and setup by Python scripts ran either
on-board or on another computer. The SNN is used either as a real-time emulator for biophys-
ically realistic models or integrated in a biohybrid experiment setup. In a real-time emulation
setup, it runs fast simulations of biophysically detailed models suited for large parameters
sweeps. Integrated in a biohybrid experimental setup, it acts as a versatile biomimetic arti-
ficial neural network easily interfaced with standard biological recording units.
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2.1.1 Independents neurons136

The neurons composing the SNN are modeled with high biological plausibil-
ity using the Hodgkin-Huxley (HH) paradigm [27] in the Pospichil model [28]
implementing 6 conductance-based currents. An injected current mimicking
synaptic noise following an Ornstein–Uhlenbeck process [29, 30] reproduces
spontaneous activity by triggering action potentials on a random basis. All
parameters of the HH model as well as the synaptic noise parameters are tuned
through the 25 parameters available from the Python scripts (see Figure 2A).
The scripts implements 4 preset neuron types including Fast Spiking (FS),
Regular Spiking (RS), Intrinsic Burst (IB) and Low Threshold Spiking (LTS)
neurons and allow the user to create new presets. The equations of ionic chan-
nel states are pre-computed and stored in memory so that they can be easily
modified to any channel dynamic without impact on the performances of the
system or limitations on mathematical functions used. The computation of
ionic currents is performed using 32 bits floating point coding allowing emula-
tion of currents with different dynamics potentially smaller in comparison to
other currents like for Ca2+-based current in IB or LTS neurons.
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Fig. 2 Complete system architecture and integration. (A) Overview of system setup from
the configuration file generated by Python scripts ran either on-board or on another com-
puter. The configuration file is then read by a C++ application running on Canonical Ubuntu
operating system in the Processing System (PS) part to set up the SNN in Programmable
Logic (PL) part. Configuration can be emulated beforehand to predict the behavior. (B)
Schematic of system communication. System control is achieved through the C++ appli-
cation either remotely via SSH or directly on-board from the Ubuntu desktop. Spikes can
be monitored concurrently using Ethernet, WIFI and on-board file saving. Waveforms can
be monitored concurrently using Ethernet, visualization on scope by probing the Digital-to-
Analog Converter (DAC) and on-board file saving.
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2.1.2 Connected network153

Neurons are connected using biomimetic synapses mimicking AMPA, NMDA,
GABAA and GABAB receptors [31] to allow fast and slow synaptic excita-
tion or inhibition, computed using 18 bits fixed point coding. The parameters
of the synaptic models can be tuned similarly to the HH parameters through
the Python scripts (see Figure 2A). Synaptic connection can be established
between all neurons and independently weighted using the Python script allow-
ing the user to create custom functions to setup the connections. The generated
configuration file can be emulated using the Python scripts to assess behavior
and verify membrane voltage, ionic channel state equations, internal variables
and raster plot (see Figure 2A).
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2.1.3 Monitoring interface164

To maximize compatibility and versatility, a Canonical Ubuntu is running
on the processors of the board. Compatibility and versatility are important
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criteria, knowing that standards for communication protocol interfacing bio-
logical recording units vary along with manufacturers (e.g., Serial Peripheral
Interface (SPI), Ethernet, USB). In addition, laboratories often have custom
setup, designed to reach their specific needs or inherited from prior experi-
mental settings. The selected carrier board features notably multiple USB3.0
and Ethernet ports as well as expansion PMODs (standard peripheral module
interface) and Raspberry Pi headers.
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The on-board monitoring allows to store all spikes and up to 16 waveforms
in a file or/and forward it through ZeroMQ (see Figure 2B). Up to 8 membrane
voltage of neurons are selected at a time and output per Digital-to-Analog
Converter (DAC) plugged on PMOD connectors. Data is moved from the PL
to PS using Direct Memory Access (DMA) interfaced by Advanced eXtensible
Interface (AXI) using a driver, thus providing high throughput and good scal-
ing. The interval of collection and forwarding for spikes and waveforms can be
set from the application settings.
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A wireless setup communication for embedded applications is also provided
via WiFi using a PMOD ESP32 that plugs on PMOD connectors for spike
monitoring. It communicates directly to the PL via SPI protocol driven by
an ESP32 micro-controller that is able to receive and send data through WiFi
network (see Figure 2B). This solution offers a more flexible approach for
interconnection of the system that suit well in-vivo applications where cables
are a concern, while maintaining a low latency and acceptable throughput. In
addition, this constitutes a reusable element to build a reduced and minimal
embedded version of the system targeting a smaller programmable logic only
target to create an energy-efficient solution for embedded applications.
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2.1.4 System control192

The SNN is setup from the configuration file generated by Python scripts
(see Figure 2A) that is either generated directly on-board using the python
installed on the Ubuntu operating system or prior on another computer. The
application controlling the system is launched directly using the Ubuntu desk-
top on the board or remotely over SSH (see Figure 2B). The parameters of
the application are generated to JSON format along with the configuration file
so as the user may apply changes without code recompilation. The parame-
ters allows to setup the addresses for ZeroMQ forwarding, the local saving or
other parameters such as the neurons to monitor. The firmware can be easily
updated and loaded by running bash scripts, allowing convenient management
of alternative versions developed for a custom dedicated hardware. An external
stimulation trigger for each neuron with an independent duration is available
via ZeroMQ to easily integrate the system in closed-loop setups.
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2.2 Real-time emulation206

This section demonstrates two applications that use BiœmuS as a real-time
emulator of biomimetic networks to create a fast emulation setup for large
biophysically detailed network.

207
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2.2.1 Interconnected organoids emulation210

A more complex network model is emulated representing three-dimensional
tissue cultures that are derived from stem cells known as cortical organoids
and their interconnections. This model introduces three types of structures
promoting different synaptic connections between two organoids as illustrated
in Figure 3A.
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The structure named ”single” physically separates the organoids to prevent
connection between organoids. It acts as a reference model showing activ-
ity of independents organoids. The ”assembloid” or fused structure places
organoids close to each other thus favouring connection of neurons based on
proximity [32]. The ”connectoid” structure places organoids centimeters apart
while constraining the interconnection to form an axon bundle connecting
mostly neurons on the surface of the organoid [33, 34]. The parameters of
the SNN were tuned to match the electrical activity in terms of mean fir-
ing, synchronicity and burst activity of each structure obtained from MEA
recordings.
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An additional Python class has been created for that specific model case to
assign normally distributed XY coordinates to neurons and generate synaptic
connections based on specific rules for each structure. The matrix of connec-
tion and list of neurons generated is then simply translated to hardware SNN
configuration by the existing software (see Figure 2A), showcasing a case of
custom user script to generate the network structure.
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The three structures were emulated using 1,024 neurons distributed equally
between the two organoids with a similar inhibitory/excitatory ratio to biol-
ogy. Inhibition is modeled using FS neurons connecting by GABAAR and
excitation by RS neurons connecting by AMPAR. The emulation is able to
reproduce from network bursts to burst synchronization between organoids in
the assembloid and connectoid structures as shown in Figure 3A.
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2.2.2 Drug treatments emulation238

An example of application is the emulation of drug treatments targeting synap-
tic receptors in an organoid. Two emulations were performed to reproduce
a treatment by full antagonist of AMPAR (CNQX) and a treatment by full
antagonist to GABAAR (Bicuculine). An organoid of similar structure as pre-
viously presented is modeled using 1,024 FS and RS neurons connecting with
AMPAR and GABAAR is emulated on BiœmuS. During emulation, a trigger
is sent to BiœmuS to disable a given receptor thus mimicking the drug treat-
ment by full antagonist and a second trigger is sent to reactivate the receptor
(see Figure 3B).
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We show that the system emulates coherent behavior since the full antag-
onist to AMPAR prevents bursting and desynchronizes the activity while the
full antagonist to GABAAR generates continuous spiking activity similar to
an epilepsy (see Figure 3B).

248

249

250

251

252

Fig. 3 Demonstration applications using BiœmuS. (A) Three structures of cortical
organoids modeled using FS and RS neurons connected with excitatory and inhibitory synap-
tic connection (AMPAR and GABAAR) based on biological culture observations and their
spiking activity. Synaptic connections are promoted according to rules depending on the
structure to reproduce, spatial placement of neurons and the ratio of inhibition/excitation
connection observed. The spiking activity emulated corresponds to a maximum probability
for connection inside and outside the organoids of respectively 10% and 2% with 512 neurons
per organoid and a 20% inhibition/excitatory neuron ratio. (B) Emulation of drug treat-
ment in a single organoid through AMPAR and GABAAR full antagonists from 20 seconds
to 40 seconds.

253

254

255

256

257

258

259

260

261

262

review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not certified by peerSeptember 5, 2023. 

this version posted; https://doi.org/10.1101/2023.09.05.556241doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.05.556241


9

2.3 Biohybrid experiments263

This section presents the biohybrid experiments conducted using the system.
It shows how different network implementation from single neuron to larger
network can interact with biology through various interfaces.

264

265
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2.3.1 Open loop biomimetic in-vivo stimulation267

A simple case of interaction with the living thanks to the real-time behav-
ior of BiœmuS is to drive open-loop in-vivo stimulation by the SNN [13] as
shown in Figure 4A. This open-loop stimulation was applied to rat brains as a
neuromorphic-based open-loop set-up for neuroprosthetic applications target-
ing post-stroke rehabilitation studies [6, 7]. The spikes from neurons emulated
by BiœmuS are output as pulses connected to the INTAN RHS recording/s-
timulation unit to trigger stimulation upon spike reception. The spontaneous
activity of the neurons is tuned to obtain slow or fast activities by tuning
the parameters of the equation ruling the synaptic noise [13]. In this setup,
the latency between spike detection and stimulation is less than a millisecond.
This biohybrid experiment promotes the use of BiœmuS as a tool to investi-
gate stroke rehabilitation in an electroceutic approach by providing biomimetic
stimulation.
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2.3.2 Closed-loop biomimetic in-vitro stimulation on high
resolution MEA

281

282

To demonstrate the ease of integration of the system with existing solutions for
biological interfacing as well as its versatility, closed-loop stimulation between
BiœmuS and the new generation of HD-MEA (High-Density MicroElectrode
Array)[35] were performed (see Figure 4B). Connected organoids were plated
on HD-MEA. Electrodes were configured to allow activity recording on left
and right organoids while allowing stimulation of the right organoid. A sin-
gle organoid was modeled using BiœmuS on a network of 1,024 neurons and
emulating for 180 seconds. Spiking activity of BiœmuS was forwarded to the
computer hosting the controlling the HD-MEA system using ZeroMQ over
Ethernet and stimulation was sent using ZeroMQ on the external stimulation
port of BiœmuS. A Python script executed on that same computer sent stimu-
lation to the HD-MEA upon receipt of a burst from BiœmuS. This experiment
showcases the potential of BiœmuS to operate as a tool to study the impact
of adaptive stimulation on a culture following the principles of electroceutics
while highlighting its ability to adapt to a standard biophysical interface. The
benefit of the user-defined model through customizable Python scripts to adapt
to a specific application is also showcased here by assigning XY coordinates to
neurons to take advantage of the spatial resolution provided by the HD-MEA.
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301

Fig. 4 Biohybrid experiments conducted that integrate the system in a biohybrid experi-
mental setup. (A) In-vivo stimulation driven by BiœmuS spiking activity as a model of post
stroke rehabilitation via adaptive stimulation. The spiking activity of the SNN triggers stim-
ulation on an in-vivo culture using the INTAN RHS2116 headstage. Electrode arrays were
placed in the rostral forelimb area (RFA) and in the primary somatosensory area (S1) in the
brain of adult Long-Evans rats. (B) Closed-loop interaction between connected organoids
plated on HD-MEA system and single organoid emulated on BiœmuS. The spiking activ-
ity detected in the left organoid of the connectoid in the last 100ms triggers stimulation on
exterior neurons of the emulated single organoid on BiœmuS. The bursting activity detected
on BiœmuS triggers stimulation on the right organoid of the connectoid. Detection and
stimulation commands are carried out by Python scripts using. Stimulation on the SNN is
performed using the external stimulation slot. BiœmuS stimulation triggers are shown by
blue triangle and stimulations to HD-MEA by red triangles. BiœmuS is running for 180 sec-
onds starting from 10 seconds and synchronize manually with HD-MEA activity based on
the first stimulation trigger ± 300 ms.
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2.4 Performances317

The low-cost platform targeted is the AMD Xilinx Kria KR260 Robotics
Starter Kit carrier board embedding the K26 SOM by AMD Xilinx (Zynq
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Ultrascale+ MPSoC architecture). This entry level platform is capable of
running 1,024 neurons with 6 conductance-based currents for a total of 220

conductance-based synapses running real-time with a time step of 31.25 µs.
The system can also run on AMD Xilinx Kria KR260 Vision Starter Kit carrier
board with for only restriction the number of PMODs, preventing concurrent
from the concurrent use of DAC waveforms and WiFi spike monitoring. While
most of the memory available is used, less than 50% of the computing capacity
(Logic and Digital Signal Processing slices) of the board is used by the sys-
tem (see Figure 5). As the design is implemented on an entry level target, the
projection of the resources utilization on larger targets suggests the possibility
to run several calculation cores in parallel (see Figure 5) as well as allowing
faster emulation.

318
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Synapses Neurons Monitoring

Projected

KR260

332

Fig. 5 Resources utilization of BiœmuS. Utilization for main modules implemented on
AMD Xilinx KR260 Robotic Starter Kit and projected on high end evaluation boards from
AMD Xilinx (Versal Premium Series VPK120 and VPK180 Evaluation Kits and Virtex
UltraScale+ VCU118 Evaluation Kit). Logic corresponds to LUT and Flip-Flops, memory
to the total memory implemented as BRAM and URAM, DSP to the number of Digital
Signal Processing (DSP) slices.
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337

338

The average latency observed to send spikes through Zero MQ (UDP) is
240 µs for 100 ms of spiking activity. The average latency observed for spike
monitoring through WiFi (UDP) using ESP32 is between 2.8 ms and 6.2 ms
depending on the data collection interval. Overall system power consumption
is 6.50W with 3.42W associated with the calculation core. Considering only
the calculation core that is running on PL part, BiœmuS consumes 3.42 times
more than SpiNNaker [24] or BrainScaleS-2 [23] that run on ASIC.

339

340

341

342

343
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3 Methods346

3.1 SNN modeling347

It uses x ionic channels and mimic better different behavior of a cortical neu-
ron. The synapses model is from [Destexhe et al.] and possesses a biophysical
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explanation on how synapses work. In addition, a synaptic noise using the
ornstein-uhlenbeck process has been used to include spontaneous activities. It
has been proven that such models represent the intrinsic noise present in the
brain [ref]” something like that.

348

349

350

351

352

353

The neuron model is based on Hodgkin-Huxley [27] in the Pospischil
paradigm [28] to guarantee biological meaningfulness while limiting resource
consumption and reduce computations. The synapse model used is Destexhe
[31] that describes different type of receptors with a conductance-based model
that provides biological coherence. Synaptic noise is modeled using Orn-
stein–Uhlenbeck process that has been proven to represent the intrinsic noise
present in the brain [29, 30] that allow the system to create spontaneous
activity mimicking biology. The noise seeds are generated by the PS and sent
through AXI LITE to the noise generator thus guarantying true random seeds.
Equations for ionic channel states are computed from pre-calculated rate stored
in memory following the Equation 1 that corresponds to a restated equation
of the forward Euler solving.

xn+1 = r1(Vn)× xn + r2(Vn). (1)

where, xn+1 and xn are respectively the new and current value of the ionic
channel states, Vn is the membrane voltage at previous time step, r1 and r2
are the ion rate tables decoded from membrane voltage.

354
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363

364

365

366

367

368

369

370

371

The step and range of the tables are tunable in software but default hard-
ware locks the rate table size to 2048 values (1 BRAM) that provide a good
compromise between accuracy and resource usage. The default range is set to
-76 mV to 52 mV to provide high accuracy for the preset neurons. Temporal
discretization using a small time step compared to the dynamics is chosen to
allow explicit numerical solving with forward Euler.
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373

374

375

376

377

378

3.2 FPGA design379

On PL part, the computation core is clocked at 400 MHz, AXI communica-
tion to PS at 200 MHz and external components on PMOD connectors such as
DAC and ESP32 at 50 MHz. The use of multiple clocks is justified by hardware
limitations of components and blocks, multiple clocking allows all parts of the
design to work close to their maximum to maximize performances. Crossing
clock domain is handled by dual clock BRAM and FIFO for most critical sig-
nals, the remaining signals are either handled by double flip-flops or extended.
The computation core is fully pipelined.

380

381

382

383

384

385

386

387

Computation of ionic channels states and currents are encoded using 32
bits floating point. It grants good stability and accuracy to the computation of
ionic channels that are critical parts of the neuron dynamics. Since ionic cur-
rents can have different dynamics potentially smaller in comparison to other
currents, floating point coding is more suited for most computation and espe-
cially for multiplications. Calculation of current sum and forward Euler are
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encoded using 32 fixed point. Large fixed point coding for sum operations
allows to save resources and computation latency compared to floating point,
while guarantying consistent accuracy. The synaptic noise, injection current
and synapses that have less critical accuracy or perform well with fixed-point
coding are computed with 25 and 18 bits fixed point encoding to fit the ranges
of DSP slices. Synaptic weight is coded on 14 bits and can be multiplied by a
factor specified in software to mimic a larger network behavior.

388
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392

393

394

395

396

397

398

399

400

The numerical solver used is the explicit forward Euler method
(Euler–Maruyama) with a small time step compared to the system dynamics
to guaranty stability (31.25 µs). To maximize performances and limit resources
usage, DSP of the boards were inferred using macros for most operations. The
model is validated using Python implementation emulating both rate table
based computation and fixed point coding.

401

402

403

404

405

406

3.3 System monitoring and control407

The PS part is running the Canonical Ubuntu 22.04 for ZynqMP architecture.
The main application controlling the SNN is coded and compiled in C++11.
Setup from the PS to the PL is implemented by AXI LITE controlled through
/dev/mem in the C++ application.
Communication between the PL to PS is implemented using AXI DMA con-
trolled by the the C++ application using the dma proxy driver provided by
AMD Xilinx. The application implements a thread for each AXI DMA chan-
nel and cyclic buffers for AXI DMA transfers.
The Ethernet communication implements ZeroMQ Push-Pull messaging pat-
tern with a different port for each data (spikes, waveforms, and external
stimulation) that can be set from the JSON configuration file.
The interval of data collection can be set from the JSON configuration file
from 5ms to 255ms for spike collection via DMA, from 3.125 ms to 15 ms for
the waveforms collections. The WiFi connection is using UDP protocol and
the data collection interval can be set from 2 ms to 20 ms.
The data collection interval for the spikes and waveforms through the DMA
directly impacts the load of the application. A small interval will generate
more frequent write in file or frame sending thus loading the CPU. The limit
corresponds to a data collection interval smaller than the writing or sending
time of the frame therefore blocking the software in a thread.
The data collection interval for WiFi forwarding is limited by the hardware
and latency of the WiFi protocol so as high interval generates too large buffer
and too small interval may generate packet loss.
DMA based monitoring can run local saving and Ethernet forwarding concur-
rently in most cases with large data collections interval but may dysfunction
on small interval due to processor performances. Spikes and waveforms mon-
itoring through DMA can run concurrently in separate threads but may also
dysfunction on small data collection intervals due to processor performances.
WiFi, DAC and DMA based monitoring can run concurrently without impact
on performances. Bash scripts are used to compile the software, update the
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firmware and launch the application.
An external stimulation controlled via Ethernet over ZeroMQ allows to send
a stimulation of a given time to a given neuron by passing the stimulation
duration and neuron index to the PL using the AXI DMA.

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434
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436

437

438

439
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441

3.4 Real-time emulation442

Interconnected organoids emulation. The ”single” physically physically sepa-
rates the organoids to prevent connection. The ”assembloid” or fused places
organoids tens of micrometers apart [32]. The ”connectoid” places organoids
centimeters apart while constraining the interconnection to a channel of 150
µm width [33, 34]. The emulation model implements cortical neurons using FS
and RS types connected by AMPAR and GABAAR.

443

444

445

446

447

448

The synaptic connection rules for the synaptic connections inside organoids
are ruled by Equation 2 that favors connection to neurons close to each other
normalised by the diameter of organoid. The connections between organoids
are ruled by Equation 3 for assembloid and by Equation 4 for connectoid.
The former favors connection to neurons close to each other normalised by
the maximum distance possible between neurons, while the connectoid rule is
promoting connection based on the location of neuron in the organoid that
promots connection on the exterior ring.

psingle = pmax × (1−
dnpre,npost

rorg
) (2)

449
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451

452

453

454

455

456

457

458

459

passembloid = pmax × (1−
dnpre,npost

dorgpre,orgpost + rorgpre + rorgpost
) (3)

460

461

462

463

pconnectoid = pmax × 1

2
× (

dnpre,orgpre

rorgpre
+

dnpost,orgpost

rorgpost
) (4)

where pmax is the maximum probability of connection, d is the distance,
diamorg the diameter of the organoid, r the radius, npre and npost the pre-
synaptic and post-synaptic neurons, orgpre and orgpost the pre-synaptic and
post-synaptic organoids and the distance calculated from the center of the
organoids.

464

465

466

467

468

469

470

471

472

Drug treatment emulation. The organoid emulated corresponds to 1,024
neurons distributed in 10 % of FS neurons and 90 % of RS neurons. FS neurons
connect with GABAAR while RS neurons connect with AMPAR. The synaptic
connections inside the organoids were generated using the same algorithm
as for the single structure (Equation 2). The control of the activation and
inactivation of the synapses is handled by an AXI LITE register that was
set from an external computer using the same port as external stimulation
trigger (Ethernet over ZeroMQ). The python script sending the trigger from
the external computer was designed to disable synaptic connections of BiœS
after 20 seconds of emulation and reactivate after 20 seconds. The python
was synchronized by using a blocking call on the availability of BiœmuS to
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receive frames as it becomes available only after the emulation started. For
the full antagonist AMPAR, the AMPA calculation block was disabled and
the GABAAR in the case of the full antagonist GABAAR. The activation and
inactivation of the synapses is done by conditional consideration of the synaptic
current in the sum. The spiking activity was recorded using the on-board
saving of spikes with a data collection interval of 100 ms.
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487

488

489

3.5 Biohybrid experiments490

Open-loop biomimetic in-vivo stimulation. The experiment shown in Figure 4A
corresponds to a former version of BiœmuS implementing only independent
neurons using exclusively fixed point coding and fitted equations for ionic
channel states based on [36]. The platform was the ZyboZ7-20 running the
C++ application in standalone mode with spike monitoring polled using
AXI LITE and forwarded to the host computer through USB 2.0 CDC. The
parameters of the FS and RS neurons used are the same as in [36]. A spike
was considered in hardware when the membrane potential of a neuron crossed
-10 mV and generated a pulse on a 3.3V digital output. The experiment
conducted corresponds to the work [13] that provides further details on the
experimental setup and protocol.
Healthy adult Long-Evans rats (5 male, weight: 300-400g, age: 4-5 months;
Charles River Laboratories, Calco, LC, Italy) were employed for this work.
All the rats were treated with the SNN-based stimulation while they were
deeply anesthetized. The experimental procedures were performed in the
Animal Facility of the Italian Institute of Technology (IIT), Genoa, Italy and
were previously approved by the Italian Ministry of Health and Animal Care
(Italy: authorization n. 509/2020-PR).
Anesthesia was induced by placing the rat inside a vaporizing chamber and
injecting gaseous isoflurane (5% @ 1 lpm). The surgical level of anesthesia was
induced by the administration of ketamine (80-100 mg/kg IP) and xylazine
(5-10 mg/kg). The rat was then secured in a stereotaxic frame and all vital
parameters were monitored until the end of the procedure. The surgery began
by applying lidocaine cream (a topical analgesic) before performing a midline
skin incision to expose the skull. Successfully, a laminectomy was performed
at the level of the Cisterna Magna to allow the draining of cerebrospinal fluid
(CSF). Then, based on stereotaxic measurements [9] +3.5, +2.5 and –1.25,
+4.25 AP, ML, burr holes (3 mm diameter) were performed over the primary
somatosensory area (S1) and rostral forelimb area (RFA). Lastly, the dura
mater was removed from the burr holes (RFA and S1) to allow insertion of
MEAs (MEAs; A4x4-5 mm-100-125-703-A16, NeuroNexus)

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Closed-loop biomimetically driven stimulation on HD-MEA. The bi-
directional communication between BiœmuS and the HD-MEA system is
ensured by Python scripts running on a gateway computer. The HD-MEA was
configured to record from channels both from left and right organoid based
on an activity scan and to select random stimulation electrodes on the right
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organoids. The HD-MEA is the MaxOne chip of MaxWell Biosystems AG.
The spikes received from BiœmuS on the host computer are analyzed to
detect the presence of a burst in the 100 ms of activity sent. A burst is defined
as more than 64 neurons spiking at least 15 times in the last 100ms. Upon
burst detection, a stimulation of one period of a 100Hz sinus wave with an
amplitude of 40 mV is sent to the HD-MEA using custom Python script based
on manufacturer templates. Stimulation was chosen of amplitude high enough
to allow visualization of the stimulation on the MaxLab Live Software.
The spikes received from the HD-MEA triggered stimulation on BiœmuS if at
least 1 spike was detected on at least 2 channels in the last 100ms of activity
collected. The stimulation was sent through Ethernet over ZeroMQ to the
external stimulation port of BiœmuS to trigger a stimulation of 6.250ms of
0.03 mA/cm2 on the neurons on the exterior rings of the organoid.
The Python script implemented executed a thread for each task of receiving
spikes from HD-MEA, receiving spikes from BiœmuS, sending stimulation to
Maxwell and sending stimulation to BiœmuS.
The activity of the HD-MEA was recording using the MaxLab Live Software
started manually before starting BiœmuS. The activity was analysed using
the script provided by the manufacturer. The spiking of activity of BiœmuS
was recorded on-board.
The configuration of electrodes of the HD-MEA was exported from the soft-
ware. The XY configuration of neurons, network configuration and stimulated
neurons of BiœmuS were exported from the Python scripts. Detection of
burst and spikes triggering stimulation for both HD-MEA and BiœmuS were
reconstructed from the recorded data. The synchronization of both activities
was done manually based on the trigger of the first stimulation considering an
approximation of 100 to 300 ms based on the latency of the HD-MEA commu-
nication and the fluctuating latency induced by the Ubuntu operating system.
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551
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555
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Organoid cultures. Cortical connectoids were generated using previously
reported protocol [37]. Briefly, hiPSCs were dissociated using TrypLE Express
and 10,000 cells per well were seeded into U-bottom ultra-low attachment 96
well plate (Prime surface, Sumitomo bakelite) in mTeSR plus supplemented
with 10µM of Y-23632. 24h later, media was replaced with neural induction
media (NIM), consisting of DMEM-F12 with HEPES, 15% (v/v) knockout
serum replacement, 1% (v/v) minimal essential media non-essential amino
acids (MEM-NEAA), and 1% (v/v) Glutamax, supplemented with 100 nM
LDN-193189, 10 µM SB431542, and 5% (v/v) heat-inactivated FBS. On day
2, NIM was replaced without the supplement of FBS and changed every other
day until day 10.
From day 10 to 18, culture medium was replaced and changed every other
day with neural differentiation media 1 (NDM1), consisting of 1:1 mixture of
DMEM/F12 with HEPES and Neurobasal medium, 0.5% (v/v) N2 supple-
ment, 1% (v/v) B27 supplement without vitamin A, 1% (v/v) Glutamax, 0.5%
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(v/v) MEM-NEAA, 0.25 mg/ml human insulin solution, and 1% (v/v) Peni-
cillin/Streptomycin/Amphotericin (PSA) (Sigma, A5955). On day 18, culture
medium was replaced with neural differentiation media 2(NDM2), consisting
of Neurobasal medium, 0.5% (v/v) N2 supplement, 1% (v/v) B27 supplement
with vitamin A, 1% (v/v) Glutamax, 0.5% (v/v) MEM-NEAA, 0.25 mg/ml
human insulin solution, 200 mM ascorbic acid, and 1% (v/v) PSA, supple-
mented with 20 ng/ml brain derived neurotrophic factor (BDNF). On day 28,
culture media was replaced with Neural Maintenance Media (NMM) consist-
ing of Neurobasal Medium, supplemented with 2% (v/v) B27 supplement with
vitamin A, 1% (v/v) Glutamax, 1% (v/v) PSA and 20 ng/ml BDNF.
Cerebral organoids were subjected to connectoid formation after 60 days in
culture. Here, a costume made microfluidic device containing two holes which
are connected through a narrow channel were bonded on a CMOS-based HD-
MEA (MaxOne, Maxwell Biosystems). Microchannel of the microfluidic device
was coated with 2% Matrigel (Corning) in DMEM/F12 for 1h at room tem-
perature (RT). Next, coating solution is replaced with NMM and an organoid
is placed into each of the holes. Cells were kept at 37°C and 5% CO2 and half
media change was performed every 3-4 days for the duration of cell culture.
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4 Discussion590

Not applicable.591

5 Conclusion592

Running a generic operating system on the PS to handle communication offers
versatility and ease integration with existing experimental setups, while reduc-
ing development time where the low-level FPGA development is technical and
time consuming. Another benefit is the ease of use for biologists thanks to the
graphic interface and user-friendly approach offered by an Ubuntu operating
system. While non real-time operating system as Ubuntu induces a discernible
and fluctuating latency, using PL driven interrupt and AXI DMA allows
to obtain relatively low latency about the tens of microseconds. A trade-off
between latency and compatibility/versatility can be found by using solutions
such as data sent directly by PL trough expansion PMODs or ESP32, real-
time operating system or running the application the real-time cores of the
chip. Nonetheless, direct monitoring on the PL that drastically reduces the
latency remains possible using the various connectors of the board but at the
cost of longer and more complex development.

593

594

595

596

597

598

599

600

601

602

603

604

605

606

On the current target, the main bottleneck lies in the memory usage
essentially allocated for synapses weights and pre-calculated ionic channel
states. Since the current target is using a preceding architecture, more efficient
architectures of memory can be found in recent larger targets such as High
Bandwidth Memory (HBM) that integrates DRAM directly into the FPGA
package, thus providing drastically higher depth and bandwidth. Latest AMD
Xilinx chips also incorporate adaptive SoCs that provide significantly higher
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computation power notably with native floating point DSP and AI engine
while still embedding a Zynq for setup and control Figure 5. Hence porting a
similar architecture of SNN on these targets would significantly increase per-
formances and create a viable alternative to standard GPU. An alternative
would be to reduce the number of synapses as fully connected network is not
always necessary, thus allowing the implementation of more neurons.
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619

The system has proven its ease of integration demonstrated by the biohy-
brid experiments conducted on most widespread biophysical interface where
low-level communication protocol (pulse on digital output) as well as complex
communication protocols (WiFi and Ethernet) were implemented. The ease of
use also has been particularly promoted by the application Figure 3A showing
an example of complex network could be created simply from a customizable
Python script. The experiment in Figure 4B also highlighted this feature by
interfacing the BiœmuS to a biophysical interface using only Python scripts.
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The presented applications demonstrate the flexibility of BiœmuS in adapt-
ing to the study of various biological processes, including stroke trough in-vivo
stimulation (see Figure 4A) and the potential for neuroprostheses replacement
through closed-loop in-vitro stimulation driven by BiœmuS (see Figure 4B).

628

629

630
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We are proposing a low-cost, flexible and real-time biomimetic tool that
could allow wider exploration of the mechanism of the living thanks to real-
time emulation and hybridization.

632

633

634

Supplementary information. Not applicable.635

Acknowledgments. We acknowledge Landry Bailly for the synaptic con-
nection heatmap of the organoid emulation, Andréa Combette for the analysis
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[13] Di Florio, M., Carè, M., Beaubois, R., Barban, F., Levi, T., Chiappalone,
M.: Design of an experimental setup for delivering intracortical micros-
timulation in vivo via spiking neural network. In: 2023 45th Annual
International Conference of the IEEE Engineering in Medicine & Biology
Society (EMBC) (2023). IEEE

715

716

717

718

719

[14] Corradi, F., Indiveri, G.: A neuromorphic event-based neural record-
ing system for smart brain-machine-interfaces. IEEE transactions on

review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not certified by peerSeptember 5, 2023. 

this version posted; https://doi.org/10.1101/2023.09.05.556241doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.05.556241


21

biomedical circuits and systems 9(5), 699–709 (2015)

720

721

722

[15] Hines, M.L., Carnevale, N.T.: Neuron: a tool for neuroscientists. The
neuroscientist 7(2), 123–135 (2001)

723

724

[16] Gewaltig, M.-O., Diesmann, M.: Nest (neural simulation tool). Scholar-
pedia 2(4), 1430 (2007)

725

726

[17] Stimberg, M., Brette, R., Goodman, D.F.: Brian 2, an intuitive and
efficient neural simulator. Elife 8, 47314 (2019)

727

728

[18] Van Albada, S.J., Rowley, A.G., Senk, J., Hopkins, M., Schmidt, M.,
Stokes, A.B., Lester, D.R., Diesmann, M., Furber, S.B.: Performance
comparison of the digital neuromorphic hardware spinnaker and the neu-
ral network simulation software nest for a full-scale cortical microcircuit
model. Frontiers in neuroscience 12, 291 (2018)

729

730

731

732

733

[19] Tavanaei, A., Ghodrati, M., Kheradpisheh, S.R., Masquelier, T., Maida,
A.: Deep learning in spiking neural networks. Neural networks 111, 47–63
(2019)

734

735

736

[20] Donati, E., Payvand, M., Risi, N., Krause, R., Indiveri, G.: Discrimination
of emg signals using a neuromorphic implementation of a spiking neural
network. IEEE transactions on biomedical circuits and systems 13(5),
795–803 (2019)

737

738

739

740

[21] Davidson, S., Furber, S.B.: Comparison of artificial and spiking neu-
ral networks on digital hardware. Frontiers in Neuroscience 15, 651141
(2021)

741

742

743

[22] Merolla, P., Arthur, J.V., Alvarez-Icaza, R., Cassidy, A.S., Sawada, J.,
Akopyan, F., Jackson, B.L., Esser, S.K., Appuswamy, R., Taba, B., Amir,
A., Flickner, M.: Merolla communication network and interface a million
spiking-neuron integrated circuit with a scalable. (2014)

744

745

746

747

[23] Pehle, C., Billaudelle, S., Cramer, B., Kaiser, J., Schreiber, K., Strad-
mann, Y., Weis, J., Leibfried, A., Müller, E., Schemmel, J.: The
brainscales-2 accelerated neuromorphic system with hybrid plasticity.
Frontiers in Neuroscience 16 (2022)

748

749

750

751

[24] Painkras, E., Plana, L.A., Garside, J., Temple, S., Galluppi, F., Patterson,
C., Lester, D.R., Brown, A.D., Furber, S.B.: Spinnaker: A 1-w 18-core
system-on-chip for massively-parallel neural network simulation. IEEE
Journal of Solid-State Circuits 48(8), 1943–1953 (2013)

752

753

754

755

[25] Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S.H.,
Dimou, G., Joshi, P., Imam, N., Jain, S., et al.: Loihi: A neuromorphic

review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not certified by peerSeptember 5, 2023. 

this version posted; https://doi.org/10.1101/2023.09.05.556241doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.05.556241


22

manycore processor with on-chip learning. Ieee Micro 38(1), 82–99 (2018)

756

757

758

[26] Stradmann, Y., Billaudelle, S., Breitwieser, O., Ebert, F.L., Emmel, A.,
Husmann, D., Ilmberger, J., Müller, E., Spilger, P., Weis, J., et al.: Demon-
strating analog inference on the brainscales-2 mobile system. IEEE Open
Journal of Circuits and Systems 3, 252–262 (2022)

759

760

761

762

[27] HODGKIN, A., HUXLEY, A.: A quantitative description of membrane
current and its application to conduction and excitation in nerve. Bulletin
of Mathematical Biology 52(1-2), 25–71 (1990). https://doi.org/10.1016/
s0092-8240(05)80004-7

763

764

765

766

[28] Pospischil, M., Toledo-Rodriguez, M., Monier, C., Piwkowska, Z., Bal,
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