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INTRODUCTION

I. Moon Formation

This study focuses on the thermal
overturn of the Moon’s cumulate man-
tle at the beginning of the second cooling
phase. The Moon formed approximately
4.5 billion years ago from a collision be-
tween two planetary bodies: the proto-
Earth and Theia, a planetary body simi-
lar in size to Mars. The impact between
the two bodies was violent enough that,
once most of the ejected matter aggre-
gated into a single body (the Moon), its
mantle was completely melted, forming a
Lunar Magma Ocean (LMO) extending
from the core to the surface (see Figure
1.1).

Figure 1.1 – Lunar mantel structure during
the first radiative cooling phase (a) and the
second diffusive cooling phase (b), from
Colin and al. from [1]

II. Moon cooling

The cooling of the Moon occurred in
two phases: a short one (≈ 1000 years),
driven by radiative processes, and a much
longer one, driven by diffusive processes.

A. First Radiative step

During the first step, a deposit of
olivine and pyroxene solidified at the in-
terface between the LMO and the solid
core. Once the LMO surface reached
the eutectic temperature, an anorthosite
crust formed, blocking radiative losses.
The main cooling process then became
diffusion, with a much longer timescale
compared to radiative loss.

During the radiative cooling phase,
a common hypothesis is to consider

that the temperature of the LMO cor-
responds to the liquidus temperature
from the binary phase diagram of olivine-
pyroxene/anorthosite. The temperature
of the LMO follows the cooling path of
this diagram. The LMO temperature is,
therefore, directly related to the fusion
temperature of olivine through the fol-
lowing equation:

Tliq = Tol −mC(t)

Where C(t) is the mass fraction in
anorthite component and Tliq, Tol are,
respectively, the temperature of the liq-
uidus and the fusion temperature of
olivine.

Considering the fact that anorthite
is not present in the olivine-pyroxene cu-
mulates, the conservation of anorthite in
the LMO yields, for a given time t:

(R3M − R3co)C0 = (R3M − R3cu)C(t)

Combining the two previous equa-
tions, we finally obtain the following
liquidus temperature evolution. Ignor-
ing diffusive processes due to the short
timescale and considering this temper-
ature constant in the first phase leads
to an isentropic temperature profile (see
Figure 1.2):

TLiq(t) = TOL −mC0
Rm3 − R3co
R3m − R3cu(t)

(1.1)

B. Second diffusive step

Once the eutectic temperature is
reached, the anorthosite crust begins
to form, significantly reducing radiative
heat dissipation. This marks the end of
the first cooling step and the beginning
of the second.

The isentropic temperature profile
obtained in (1.1) leads to instabilities in
the second phase, ultimately resulting in
a thermal overturn in the cumulates. At
the end of the first phase, there is an
accumulation of cold matter at the top
of the cumulates, while the cumulates
near the core interface remain much hot-
ter. The temperature difference is on
the order of 500K. Logically, the colder,
denser cumulates will try to move be-
neath the hotter, lighter ones, leading
to the overturn.
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Figure 1.2 – Isentropic temperatures pro-
files corresponding to 1.1 reached after the
end of the first cooling stage, leading to
overturn in the cumulates and increasing
flux.

The dynamic in the solid cumulates
at the beginning of the second phase can
be described using the Boussinesq ap-
proximation in a slab geometry, where all
the thermodynamic variables are consid-
ered constant except the temperature T ,
the pressure P and the density ρ multi-
plied by g.


∇⃗ · u⃗ = 0
ρ0
∂u⃗
∂t
+ u⃗ · ∇⃗u⃗ = ∇⃗P + η∇2u⃗ + ρg⃗

∂T
∂t
+ u⃗ · ∇⃗T = κ∇2T

ρ = ρ0(1− α(T − T0))

As a thermal conductivity driven
Rayleigh-Bénard convection is expected,
the rescaling is chosen with respect to
the diffusive characteristic time d2/κ,
leading to the following rescaling :

x̂ , ŷ =
x

d
,
y

d
, ẑ =

z

d
+
1

2
, θ̂ =

θ

∆T
,

t̂ =
tκ

d2
, p̂ =

pd2

κη

with d the height of the cumulates
layer (e.g. Rcu−Rco), ∆T the tempera-
ture difference between the LMO/cumu-
lates interface and the core/cumulates
interface, κ the thermal diffusivity of the
cumulates and η its viscosity. When we
considered the density and the heat ca-
pacity equal in the crust, in the LMO and
in the cumulates. We can show that

κcu =
kcu
ρcp
= 1.2e−6m2s−1

To get the correct dimensionnalized
value we will use the following param-
eters values :

d κ ∆T

1e6 m 1.2e−6m2s−1 550 K

Table 1.1 – Cumulates width, heat diffu-
sivity and characteristic temperatures dif-
ference, from [1]

This rescaling results in the following
dimensionless formulation of equations.∇⃗ · u⃗ = 01

Pr
Du
Dt
= −∇⃗p +∇2u⃗ + Raθe⃗z = 0

Dθ
Dt
= ∇2θ

(1.2)

With Ra = ρ0gα∆Td
3

κη
and Pr = η

κρ0
.

The cumulates being a solid phase, the
Prandlt number can be considered infi-
nite, simplifying again the system, lead-
ing to the final formulation of our prob-
lem :

∇⃗ · u⃗ = 00 = −∇⃗p +∇2u⃗ + Raθe⃗z = 0
Dθ
Dt
= ∇2θ

(1.3)

Regarding boundary conditions, we
will consider free-slip contact between
the cumulate layer and its boundaries
(the LMO and the core) with imperme-
ability. For this study we will neglect the
thermal flux from the core and we will
consider the temperature of the LMO
boundary constant ;

u⃗ · e⃗z = 0 on z = 0, 1
∂θ
∂z
= 0 on z = 0

τ x = 0 on z = 0, 1
θ = 0 on z = 1

The goal of this project is to study
the evolution of the cumulate layer at
the beginning of the second stage of the
Moon’s cooling, focusing on the effects
of temperature profiles and the range of
Rayleigh numbers Ra.

III. Numerical Implementation

For the numerical implementation,
we utilized the Dedalus [2] toolbox. A
Fourier and Chebyshev spectral method
was applied to solve the convection-
diffusion equations. The Fourier de-
composition was applied to the x-axis,
characterized by periodic boundary con-
ditions on a regularly spaced grid of 256
points:

xj = j
L

N

For the z-direction, we employed the
Chebyshev spectral method to satisfy the

Dirichlet boundary conditions applied to
the temperature. This was achieved us-
ing the Chebyshev-Gauss-Lobatto col-
location points to avoid the so-called
Runge’s phenomenon:

zj = cos
(
j
2π

N

)
For time integration, we used a second-
order Runge-Kutta scheme with adap-
tive time-stepping applied every 10 iter-
ations.

Another important point to note is
the introduction of instability to provoke
the overturn. This was achieved us-
ing simple Gaussian noise damped at the
walls. The noise could significantly influ-
ence the modal response of the system
and the characteristic lengths, which we
will analyze further.

IV. Objectives

Due to the spherical coordinates, the
initial temperature profile scales as ∝ 1

r3
.

To study this within a slab Cartesian sys-
tem, we approximated the profile with a
piece wise linear model. This approach
highlights the importance of the depth
of the linear part in determining the dy-
namics of the system.

Additionally, in [1], the overturn is
assumed to follow the relationship:

ΦOV ∼ e−
t
τOV

We aim to evaluate this hypothe-
sis and examine the influence of the
Rayleigh number on the system’s dy-
namics within a Moon-compatible range
(Ra ≈ 105 ∼ 106).

DEPTH STUDY

I. Control parameters : e and Ra

The Rayleigh-Bénard instability is
usually studied under conditions of a lin-
ear temperature gradient between the
"hot" and "cold" sides of the observed
volume. However, the temperature pro-
file at the beginning of the second phase
in the cumulate varies as ∝ 1/r3. There-
fore, using a linear temperature profile is
not well-suited in this case.

To study the effect of the "shape" of
the initial temperature profile, we used
a piece wise function defined in Equa-
tion 2.1. The main goal of this study is
to understand the effect of the depth,
e, which represents the depth of the
instability-contributing layer, and to de-
termine if the linear gradient approxima-
tion yields results that are sensibly close
to those of a more realistic model. The
choice of this piece wise model was moti-
vated by its flexibility to define a "curva-
ture" approximating the 1/r3 profile while
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easily controlling the energy associated
with any depth e.

T (z, e) =

{
Lz−z
e(2−e) z > Lz − e
Lz
2Lz−e z < Lz − e

(2.1)

To allow for a correct comparison be-
tween the results, the profiles were tuned
to all have the same initial internal en-
ergy. This was achieved by controlling
the core temperature with the following
relation:

T (0, e) =
Lz

2Lz − e
(2.2)

Ten profiles were used, ranging from a
shallow depth (e = 0.1Lz) to a linear
profile. The shapes of the initial thermal
profiles are displayed in Figure 2.1
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Figure 2.1 – Initial thermal profiles used
in the simulations with the associated core
temperature ensuring constant initial en-
ergy.

A second control parameter was
used in the simulation: the Rayleigh
number (Ra). Two different values were
used to simulate two sets of e-dependent
data: Ra = 7.104 and Ra = 7.105.
Several arguments motivated the choice
of two distinct values for the study of
the influence of e. First, the Moon-
compatible range includes fairly high Ra
values, which significantly increase com-
putation time. Additionally, it was inter-
esting to study a case at lower Ra, as
the dynamics of the overturn should be
comparable to those at higher Ra val-
ues. Furthermore, we found that two
different regimes of instability arise for
the two chosen values. Below a specific
threshold of Ra, the instability remains in
a decaying-steady-state (DSS) with an
almost constant wavelength.

Figure 2.2 – Surface heat flux as a func-
tion of time. Top: Ra = 7.104, Bottom =
Ra = 7.105

Figure 2.3 – Surface heat flux as a func-
tion of time. Top: Ra = 7.104, Bottom =
Ra = 7.105

If Ra exceeds this threshold, which
determines the boundary between the
two unstable regimes, the convection
forces a constant modification of the
wavelength through the fusion and divi-
sion of the convective rolls. The choice
of the two exact Ra values used in the
simulation was made arbitrarily with re-
spect to the two regimes, as only the
difference between the regimes is signif-
icant here and not the exact Ra values.
As shown in Figures 2.3 and 2.2, the
choice of the two Ra values is appropri-
ate, as the two regimes are clearly exhib-
ited: 2.3-top: DSS; 2.2-bottom: com-
petition between multiple overturns and
instability decay.

II. Influence of e on the overturn

Due to the specific arrangement of
the cumulates at the end of the first
stage (cold on top and hot below), a
thermal overturn is inevitable (see Fig-
ure 2.4). After a given amount of time,
allowing the system to reach the required
conditions to effectively start convec-
tion, the hot matter abruptly rises while
the cold matter sinks, resulting in a ther-
mal overturn: an inversion of the cold
and hot regions within the cumulates.
Once the instability starts, it does not
stop until the effective Ra number falls
below the critical stability value due to
the cooling of the system.

The thermal overturn is, of course,
clearly visible on a thermal map, as dis-
played in Figure 2.4. However, it is also
significant to examine the local heat flux
map (see Figure 2.5). The overturn ap-
pears as a cell of very high heat flux, a
characteristic that will be studied later
on.

The influence of the control param-
eter e is straightforward: the larger
the instability-contributing region is, the
sooner the overturn takes place, the
quicker it is, and the more powerful the
heat flux cell becomes.

A. overturn dynamics

The temperature and internal heat
flux maps are effective for understand-
ing the temporality of the phenomenon,
but they are not very practical for mea-
suring quantitative times to characterize
the effect of e on the overturn dynamics.
We chose to use two dimensionless num-
bers for this purpose: the Reynolds num-
ber (Re) and the Nusselt number (Nu).
The Reynolds number compares viscous
forces to inertial forces. It can also
be interpreted as the ratio between the
characteristic times of diffusive momen-
tum transport and convective momen-
tum transport. In essence, it provides
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information on the dynamics of the sys-
tem. The Nusselt number, on the other
hand, compares thermal diffusion time
to thermal convection time and there-
fore informs on the thermal behavior of
the system.

The first result extracted from the
simulation is that the choice of the shape
of the initial temperature profile—hence
the choice of depth—does not signifi-
cantly affect the amount of energy lost
by the system over the entire duration
of the simulation. The average temper-
ature profiles are similar enough to ne-
glect the impact of e on the global cool-
ing of the system (see Figure 2.6, top).
However, it directly and significantly af-
fects the timing, duration, and intensity
of the overturn. This is a significant re-
sult as the overturn is very localized in
time. Moreover, the energy it transports
is tremendous. Depending on the dy-
namics of the overturn, it can delay so-
lidification or even re-melt the crust and
mantle.

The two numbers, Re and Nu, pro-
vide insights into the kinematics of the
phenomenon. As Nu represents a ra-
tio of thermal diffusion to convection,
the sharp increase visible in Figure 2.6-
bottom indicates the overturn event.
The latter part of the peak is dominated
by an increase in conduction and a re-
duction in convection due to the cool-
ing of the system, which slows down
the instability. While Nu primarily in-
forms on the thermal aspects of the phe-
nomenon, Re provides insights into the
transport of momentum within the cu-
mulates. Several peaks are visible in Fig-
ure 2.6-middle. Each peak is correlated
with the separation or fusion of convec-
tive rolls. The separation is caused by a
secondary overturn, as will be explained
in the modal analysis (see Section II),
while the fusion occurs due to the sys-
tem’s inability to maintain the rolls as
it cools. To quantify any peaks, we
used three characteristic times: the left
and right half-height times and the peak
time. The depth e controls the Nu and
Re times almost identically (see Figure
2.7), with differences being mostly no-
ticeable for small e. Although no model
has been established to determine the
exact relationship between these times
and e, two behaviors arise from this re-
sult: the deeper e is, the sooner the over-
turn takes place and the shorter it lasts.
However, a "saturation" effect also ap-
pears. For deep profiles (e ≥ 0.7), all
three times converge toward the limit of
the purely linear thermal profile. Figure
2.7 also confirms what can be observed
in Figure 2.6: the Nu peak always oc-
curs later than the Re peak, although
a synchronization is evident—the maxi-
mum of Re coincides with the Nu left

time.

Figure 2.4 – Evolution of the thermal pro-
file with time in function of e for Ra =
7.104. The overturn is clearly visible for
all e at t ≈ 10−2

Figure 2.5 – Evolution of the local heat flux
with time in function of e for Ra = 7.104.
The overturn, characterized by a heat cell,
is clearly visible for all e at t ≈ 10−2

This can be understood as follows:
to achieve an increase in heat flux
(Nu), matter must first be transported,
with convection being the preferred heat
transport mechanism during the over-
turn.

The other main effect of e on the
overturn dynamics is on the energy
transported during the event. Three
measures are relevant here: the local
heat flux (Qintmax) generated by the over-
turn, the overall energy dissipated within
the cumulates (Ecuov ), and the energy lost
in the LMO (E l ibov )
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Figure 2.6 – Top : average temperature
- Middle : Reynolds number - Bottom :
Nusselt number. Quantities measured for
all e at Ra = 7.104
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Figure 2.7 – Characteristic times of the
main peak (overturn peak) for both Nu
and Re
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.

Figure 2.8 displays the maximum lo-
cal heat flux recorded during the simula-
tion as a function of depth e. While the
exact mathematical relationship remains
unclear, it is interesting to note that this
quantity scales perfectly linearly with e.
This linear dependency is observed again
when integrating the local heat flux with
respect to the width of the Re peak,
which approximately corresponds to the
energy dissipated by the overturn within
the cumulates. The choice of this inte-
gration window is explained by the dy-
namics of the overturn: heat transport
begins at the bottom of the Re peak,
and convection remains predominant un-
til the peak of the Nu curve, which coin-
cides with the right half-time of the Re
peak. Thus, the width of the Re peak
can be considered a suitable integration
window for the overturn. Figure 2.9 con-
firms this linear relationship, with slight
non-linearity at shallow and deep values
of e. The significant deviation at low e
can be explained by the complex shape of
the overturn peak for "high" Ra values,
as displayed in Figure 2.10. Nonethe-
less, the deeper e is, the more energy
is transported by the overturn within the
cumulates.
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Figure 2.8 – Maximum local heat flux as
a function of e. The dashed lines are
linear fit. For Ra = 7.104, we found :
Qintmax (e) = −0.9738 + 155.29e and for
Ra = 7.105; Qintmax (e) = −186.6+1952.7e

On the other hand, Figure 2.11
shows that e has no significant effect
on the energy released in the LMO. This
indicates a decoupling of the two phe-
nomena, which aligns with the behavior
of the average temperature in Figure 2.6:
the amount of energy lost is independent
of e.
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Figure 2.9 – Energy dissipated in the cu-
mulates during the overturn.

III. Influence of Ra

We showed that the shape of the ini-
tial thermal profile controls the dynamics
of the overturn but has no effect on the
warming of the LMO. In this section, we
will demonstrate that the choice of Ra
has a significant impact on the dynamics
of the overturn.
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Figure 2.10 – Top : average temperature
- Middle : Reynolds number - Bottom =
Nusselt number. Quantities measured for
all e at Ra = 7.105

The Rayleigh-Bénard instability, as
presented in this work, exhibits two
regimes once started: a decaying-
steady-state (DSS) and a non-stationary

one. The non-stationary case is repre-
sented in Figure 2.2. In this regime,
cells are unstable and undergo a sec-
ond overturn, dividing the wavelength by
three (more explanation on this behavior
is provided in Section II). Due to cool-
ing, cells also tend to widen and merge
with their smaller neighbors until no cells
remain. These are competing mecha-
nisms. These events can be observed
in Figure 2.10, and traces can also be
seen in the heat flux map (Figure 2.12),
though none appear in the temperature
map. While the order of magnitude of
the different scalar quantities extracted
from the simulation differs, the global
behavior of the overturn and cooling is
not affected by this choice of a higher
Ra. The results presented above still
hold.
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Figure 2.11 – Energy dissipated in the
LMO by the overturn

The data presented in Figures 2.8,
2.9, and 2.11 show a deviation in behav-
ior compared to the data obtained from
the lower Ra simulation. However, these
deviations are not completely reliable as
a higher numerical error was observed in
this data, especially at low e.

Regarding the effects of Ra on the
dynamics of the overturn, they can be
summarized in three points: The higher
Ra is, the faster the overturn occurs
and the shorter it lasts. Ra has no
effect on the amount of energy dissi-
pated within the cumulates. The instan-
taneous power density increases with Ra
but is compensated by the shorter dura-
tion of the event, preventing an exces-
sive release of energy in the LMO. The
amount of energy released in the LMO
is inversely proportional to Ra.

IV. Reel time re-scaling

This study was conducted using di-
mensionless quantities, but the goal was
to compare the effects of the shape of
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the initial thermal profile on the entire
dynamics of lunar cooling with existing
literature. The study at low Ra was
relevant for understanding the mecha-
nisms at play; however, this low Ra is far
from the Moon-compatible range. This
statement also motivated the choice of
a second Ra, with a compatible value of
7.105. Our main results are presented
in Tables 2.1 and 2.2. The re-scaling of
the energy was carried out as presented
in Equation 2.3.

E =

∫ ∫
⟨Φ⟩dzdt

=
d2∆T

κ

∫ ∫
⟨Φ̂⟩dẑdt̂

(2.3)

Figure 2.12 – Evolution of the local heat
flux with time in function of e for Ra =
7.105

e time (Myr)
τov 0.1 23
τov 1 115
∆τov 0.1 4,5
∆τov 1 35

Table 2.1 – Overturn date (τov ) and dura-
tion (∆τov ). The overturn date is defined
as the time of the Nu peak. The duration
is defined as the width of the Re peak.

Energy (1019J)
E l ibov 6,72
Ecuov 6,3

Table 2.2 – Energy liberated into the LMO
(E l ibov ) and dissipated into the cumulates
during the overturn (Ecuov )

RAYLEIGH STUDY

In this section, we will emphasize
the importance of the Rayleigh number
regarding the cooling dynamics of the
Moon through scaling laws and modal
analysis.

I. Convective Behavior

When we consider the super-
isentropic temperature profile, the over-
turn dynamics should initially be dom-
inated by convective processes due to
the dominant buoyancy force in the pres-
ence of the random noise we introduced.
Hence, the overturn time and charac-
teristics should depend on the Rayleigh
number on short time scales.
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102 Φtot
z=0 · Ra1/3

e−tRa
1/3

t−4

0.2 1.0 3.0 4.0

×106

t̂ →

Φ̂
→

Ra

Figure 3.1 – Adimensionnalized Total flux
time evolution for multiple Rayleighs val-
ues. The rescaled time from 1.1 yield an
overturn time of the order of 1 or 100-Myr.
The plain black and dotted line are char-
acteristic decaying scaling we will unearth
firther.

A. Time Rescaling

More precisely, we expect the over-
turn time τOV to be inversely propor-
tional to Ra. Indeed, we should have:

τOV ∼ τconv = Ra−1τdiffusion

(3.1)

To uncover this scaling, we will study the
total flux at the top boundary of the sys-
tem:

Φtot(z = 0) = V θ − ∂zθ

This flux includes both the advective and
diffusive contributions.
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This overturn time is significantly
larger than the one expected in previous
studies [1]. Indeed, it is traditionally ac-
cepted that the overturn time should be
on the order of several thousand years,
which allowed neglecting the diffusive
behavior in the cumulates during the first
cooling stage. However, this result is
strongly dependent on the noise level in
the temperature profile. In our study, we
considered a noise level of the order of
1e−3T (z), which might be much more
significant in the original cumulates.

Furthermore, the noise distribution
is assumed to be normal, which could
lead to slower responses for the natural
modes of the system. These effects will
be addressed further. We can already see
that the exponential decay expected af-
ter the overturn is not evident and seems
to be disrupted by a convection cascade
that could accelerate the decay.
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The natural convective time scaling
of the system is clearly illustrated in the
following figure, where we studied the
width and the time of the overturn phe-
nomena.

We recover the expected dependency
(3.1) for the overturn time. One inter-
esting observation is the width depen-
dency of the peaks. Indeed, it is also in-
versely proportional to Ra, meaning that
for a non-negligible time after the over-
turn, the system is still dominated by
convective behavior; otherwise, it would
have been proportional to Ra.

Hence, since the convective behav-
ior remains dominant after the overturn,
there is no reason to expect an expo-
nential decay characteristic of a diffusive
process.

t

Φ

τov

τW

Figure 3.3 – A quasi-Gaussian peak with
an exponential tail. The dashed line marks
the peak time τov The dotted horizontal
line is at half maximum, illustrating how
the width of the peak is measured.

B. Nusselt scaling

The total flux Φtot we studied earlier
is equivalent in our study to the Nusselt
number Nu at the top boundary. Indeed,
Nu is classically defined as follows:

Nu =
Φtot

Φcond
=
V θ − ∂zΘ
∂zΘ

However, in our study, we have imper-
meability at the boundary, which implies
that the heat flux can only be diffusive,
resulting in a constant Nu. In classi-
cal Rayleigh-Bénard steady convection
(which is not the case here) at high
Rayleigh numbers, we have the classi-
cal result Nu ∝ Ra1/3, resulting from
the equilibrium between diffusion in the
boundary layer and heat transport by
convection in the main flow. We can
wonder if this result is still valid in our
case for relatively short times, assuming
that the temperature profiles will not be
affected by diffusion.

Just after the overturn, a diffusive
boundary layer will be maintained due to
impermeability. In this diffusive boundary
layer, we can assume that the tempera-
ture profile is linear (see fig.3.6). This
gives:

Φtot
z=0 = ∂zθ =

∆θ

δT

where δT is the size of the diffusive
boundary layer. Assuming that the tem-
perature difference does not depend on
the Rayleigh number just after the over-
turn, we can deduce:

Φtot
z=0 ∝

1

δT

(3.2)

The hypothesis we made seems to be
verified in fig.3.6, and it is perfectly rea-
sonable since convective processes only
advect heat. The size of the boundary
layer is also an interesting subject and
should scale like Ra−1/3.

Indeed, if we equate the momentum
diffusion and the temperature diffusion
timescales in the boundary layer, we get
for the momentum diffusion:

τp = η/∆ρδTg

This is done by equating the buoy-
ancy force with a typical Stokes friction.
On the other hand, we get for the tem-
perature diffusion:

τT = δ
2
T /κ

Equating both timescales, we easily
get:

δT ∝ Ra−1/3

(3.3)

This concludes our attempt to re-
cover the desired scaling laws for the to-
tal flux (3.2), which matches the tradi-
tional Nusselt scaling. In fact, the adi-
mensionalization we propose, combined
with the same hypotheses we made,
leads to:

Φ̂ = Φ
d

∆T
= Nu

Hence, it is quite reassuring to recover
the same scaling.

105 106

2e1

4e1

6e1

Slope = 0.33

Φtot
z=0

Ra→

Φ
→

Figure 3.4 – loglog plot of the Nusselt evo-
lution over Ra at t = τOV the overturn
time. We recover the 1/3 power scaling
predicted by the previous approach

This scaling analysis of the convec-
tive overturn behavior allows us to pro-
pose the following natural rescaling for
next studies :

t̂ = Ra · t
Φ̂ = Φ · Ra−1/3

When convective processes are dominant
this rescaling should unearth the same
solution to (1.3) independently of the
Rayleigh number. This can be verified
on the next figure :

102 103 104 105

0.1

0.3

Φtot
z=0 · Ra1/3

0.2 1.0 3.0 4.0

×106

t̂ →

Φ̂
→

Ra

Figure 3.5 – Semilogy Rescaled total flux
from different Rayleighs numbers. Clearly
showing the dominant convective process
at short time scale

We may wonder why the convective
rescaling we used no longer works after
the overturn. This is probably due to the
dissipation, which becomes more signifi-
cant for lower Ra in the boundary layer.
Hence, we will no longer have ∆θ inde-
pendent of the Rayleigh number, which
will break our previous scaling. Further-
more, the cascade of overturns we began
to highlight previously I acts on decreas-
ing scales with time, so it is not clear if
the Rayleigh number we used to charac-
terize the flow is still relevant.

C. Boundary Layer

We previously showed that during
the overturn at time t = τOV, we
should have a boundary layer of size
δT ∝ Ra−1/3. This boundary layer re-
sults from an equilibrium between all
the diffusive timescales and leads to
another isentropic temperature profile.
Hence, another overturn is expected to
re-equilibrate the temperature profile.
We can then easily understand that this
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will lead to an infinite cycle of overturn-
diffusion-overturn processes, character-
izing the overturn cascade we cited ear-
lier.

0.0 0.2 0.8 1.0

0.0

0.2

0.6

0.8

105 106

0.005

0.04 Slope = -0.32

δ T
→

Ra→

T
→

z →

Ra

Figure 3.6 – On the top : Mean tem-
perature profiles during the overturn (t̂ =
600) for several Rayleigh number with the
boundary layer position indicated by black
dots. On the bottom : Boundary layer
width dependency over the Rayleigh num-
ber. The uncertainty raised by the dis-
cretization is represented by the grey field

We may wonder how this cascade will
affect the Moon’s cooling. Indeed, in
a coarse approximation, we can assume
that these successive overturns will lead
to a well-mixed interior, thermally equi-
librated over time. This assumption is
verified in our simulations after the sec-
ond overturn, as shown in fig.3.8. This
thermalized assumption in the bulk al-
lows us to neglect diffusive flux in the
bulk and only consider the boundary layer
flux. This leads to the following:

Φd−δ(t) ≈ Φtot
z=0 = −kcu∂zθ ≈ kcu

θ(t)

δT (t)

(3.4)

where kcu is the heat conduction con-
stant in the cumulates, and T (t) is the
temperature of the bulk. We will assume
in the following that δT ≪ d , where d is
the depth of the slab we studied.

z

T

Tbulk

z = dδT

Figure 3.7 – Sketch of the temperature
profile in a well-mixed situation

Now, if we consider the energy bal-
ance for the well-mixed interior, we can
write, neglecting the advection (if we ac-
count for it, we can show that it has the
same dependence in θ as the diffusive
term since it is the boundary layer):

D
(
ρCp⟨θ(t)⟩H2(d − δT )

)
Dt

= −Φz(t)H2

∂t (ρCp⟨θ(t)⟩V ) = −k ⟨θ(t)⟩
δT

The second step involves neglecting the
boundary layer width while considering
the bulk volume. This will finally lead
to dropping the angles:

∂tθ = −Bθ(t)
δt

(3.5)

with B = κ
d
. From now on, we will

only focus on scalings; every constant
will therefore be undefined. Now, consid-
ering that δT ∝ θ−1/3, which is a direct
consequence of the study we did previ-
ously (3.2), we get:

∂tθ = −Aθ4/3
(3.6)

If we separate the variables, we easily ob-
tain the following scaling for the tem-
perature over time: θ(t) ∼ t−3. This
scaling will finally lead to the following
expression for the total flux:

φtot
z=0 ∼ t−4

This power scaling is quite important and
would result in a fast equilibration of the
system. However, our simulations lead
to a much slower cooling after the pro-
file thermalization.

We previously state that the thermal
boundary layer was temperature depen-
dant, this power dependency was trying
to include the effect of the convective
behavior. However, if we consider the
boundary layer independent of the bulk
temperature (3.5) would results in the
following scaling of the temperatures :

θ(t) ∼ Φtot
z=0 ∼ e−

κt
dδT

(3.7)

We recover the characteristic diffusive
slow decay was the one assumed in pre-
vious study [1]. This seems to match
quite well the observed decay in our sim-
ulations with a characteristic time of de-
caying :

τOV =
dδT
κ

This approximate decay is of the order
of 1− 10 Myr matching the value taken
by Collin [1] . However one can see that
despite this scaling is quite interesting at
long time it fails to describe the faster
decaying of the Nusselt at short time,
when the temperature profile is not ther-
malized in the bulk. In our adimension-
alization with have :

τOV =
κ

d2
dδT
κ
= Ra−1/3

(3.8)

The results have been plotted on fig.3.2,
and one can see that the exponential de-
cay is better than the power law, however
it has the tendency to linearize at high
time (typical from a power law). Hence,
successive overturns seems to have a non
negligible impact at large time on the
cooling dynamics. To better understand
this overturn cascade we should study
the modes that are at stake in our study
and their typical growing time.

II. Modal analysis

A. Linear perturbation theory

The observation we made in fig.3.8 is
derived from the classic Rayleigh-Bénard
linear perturbation analysis. We are
interested here in the fastest growing
mode of our study. In the literature,
the most common use case of linear per-
turbation analysis applied to Rayleigh-
Bénard convection is in the context of
finding the "first" unstable mode at the
onset of the instability (Ra≫ Rac).

This study generally depends on the
boundary conditions we choose. Indeed,
these will influence the sets of eigen-
functions describing our vertical depen-
dencies. In our case, we have specific
thermal boundary conditions that are not
typical in the literature, with a perfectly
insulating boundary layer at the bottom
and a fixed temperature at the top. For
the free-slip boundary, this is the general
case that Rayleigh first used to propose
his "normal mode."
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Figure 3.8 – Contour plot of the Temperature field during the second overturn. The vorticty contour plots is superposed in blacked line to
see the second instability rising at the top of the first overturn resulting structures. The wavelength of this structure seems to be exactly
the double of the first overturn instability wavelength

Here, our problem is at the beginning
of our study at a fixed Rayleigh num-
ber, beyond the critical Rayleigh num-
ber Rc ≈ 1700. Hence, the question is:
what is the preferred mode that has the
fastest growth at our specific Rayleigh
number? This is slightly different and
will lead to different results than the
"first" unstable mode study.

Indeed, if we consider the same
adimensionalization as before with per-
turbed fields (θ∗, p∗, u∗x , u

∗
z ) verifying:

θ(x, y , z, t) = θs(z) + θ
∗(x, y , z, t),

p(x, y , z, t) = ps(z) + p
∗(x, y , z, t)

ux(x, y , z, t) = u
∗
x (x, y , z, t)

uz(x, y , z, t) = u
∗
z (x, y , z, t)

Taking the perturbed variables suffi-
ciently small, this will lead to the follow-
ing set of equation for infinite Prandtl :∇⃗ · u⃗

∗ = 0

0 = −∇⃗p∗ + ∇⃗2u⃗∗ + Raθ∗e⃗z = 0
∂tθ

∗ = ∇⃗2θ∗ + u∗z
(3.9)

These equations are linear and symmet-
ric in x and y , allowing us to use time de-
pendant Fourier modes (a clean demon-
stration on how the leads to sinusoidal
component of x, y is presented by [3]).
Dropping the * and casting x, y as x , we
get

(θ, p, ux , uz) =
(
Θ(z), P (z),

U(z),W (z)
)
este iax

(3.10)

Traditionally, we denote the remaining
non-trivial derivative d·

dz
≡ D. Further-

more, using (3.9) and taking two time

derivatives of the curl of the momentum
equations [Pellew and Southwell], and
using the conduction equation, we de-
rived a single stability equation describ-
ing the flow:

−∆2(∂t − ∆)uz = Ra∆1uz
(3.11)

with ∆1 being the horizontal Laplacian
(on x, y). Inserting the previous mode
into (3.11) gives the following charac-
teristic equation:

(D2 − a2)2(D2 − a2 − s)W = −a2WRa

(3.12)

Now that we have described the flow, we
need to see the impact of the boundary
layer on the available sets of eigenfunc-
tions W . Indeed, this part is rather te-
dious and requires a very careful study of
the order of magnitude at stake. If the
reader wants a detailed description of the
manipulations involved, they should refer
to (Drazin, Reid).

B. Boundary Conditions
Characteristics

Regarding the impermeable free-slip
boundary, this will lead to the following
constraints:

W = D2W = 0 | z = −1
2
,
1

2

(3.13)

The first equality is evident, but it is not
the case for the second. For the ther-
mal boundary conditions, this is where
our case is quite special. Indeed, we fixed
θ = 0 at the top, using the characteristic
perturbed conduction equation:

(D2 − a2)2W = −a2θRa

(3.14)

This will lead to the classical equation:

D4W = 0 | z = 1
2

However, for the bottom boundary con-
ditions, we just used an insulated bound-
ary, leading to ∂zθ = 0. Using 3.14, this
easily leads to the following constraints:

D5W − 2D3Wa2 + a4DW = 0 | z = −1
2

(3.15)

Sparrow [4] showed that this typical
boundary layer effect has a non-trivial
impact on the sets of eigenfunctions we
will uncover, and that there is no analyt-
ical way of dealing with it simply. This is
why, for this kind of non-classical bound-
ary conditions, numerical methods are
preferred. However, Sparrow mostly dis-
cusses radiative flux at the boundary and
does not delve too much into the simple
insulated case.

Indeed, just considering the simple
fixed temperature case, this will lead to:

D4W = D2W = W = 0 | z = −1
2
,
1

2

(3.16)

One can notice that a perfectly natural
solution is to consider W = cos(πz).
For the insulated boundary, sinusoidal
solutions are also possible. Indeed, con-
sidering W = cos(kzz), (3.15) will lead
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to the following constraints:

−k5z + 2k3z a2 − a4kz = 0 | z = −
1

2

(3.17)

The only root of this order 5 polynomial
is a = ±kz . Hence, the only sinusoidal
solutions that can exist must have the
same vertical and horizontal wavelength,
which is the case in our simulation (see
fig.3.10c).

C. Sinusoidal Solutions

a) Insulating Study

Considering this sinusoidal solution,
we can write from (3.12) and consider-
ing the complete set of eigenfunctions
Wj :

Wj = cos(jπz)

verifying the boundary conditions (3.13,
3.16). Hence, the only a reachable is
a = ±jπ. The main consequence we
may highlight is the quantification of the
horizontal mode by the vertical mode (as
opposed to the continuous spectrum in
the free-free case). One could see that
we did not use the characteristic equa-
tions to find the fastest growing mode
(3.12), because there are only a few sets
of allowed modes in our case. However,
if we derived the expression of s using
the characteristic equation, we obtained
for our set of Wj :

s =
a2Ra

(j2π2 + a2)2
− (j2π2 + a2)

(3.18)

The fastest growing mode then ver-
ifies ∂as = 0. This a will obviously de-
pend on Ra; however, we can show that
for sufficiently high Ra, this dependency
can be neglected, and we will have a
maximum positive s for amax verifying:

a = jπ

Hence, the only modes we can select by
imposing insulating boundary conditions
and sinusoidal modes are, for sufficiently
high Rayleigh, the fastest growing modes
in the traditional Rayleigh-Bénard study
(θ = 0 at the top and the bottom).

π 2π 3π

a

s

Figure 3.9 – Plot of s for Ra = 106, in
blue the first j = 1 mode, in red the j = 2
mode and in red the j = 3 mode

b) Free-Free Study

For this traditional case, we may
want to seek the maximal condition
∂zs = 0 from (3.18), giving the fastest
growing instability mode:

X3 + RaX − 2Raj2π2 = 0

(3.19)

With X = a2 + j2π2, solving this equa-
tion is quite heavy analytically using Car-
dano’s formulae and leads to the follow-
ing enclosed form of the real roots:

a = ±
√[
− π2j2 +(√

3
√
27π4j4R2 + R3 + 9π2j2R

)1/3
32/3

−
R

31/3
(√
3
√
27π4j4R2 + R3 + 9π2j2R

)1/3 ]

We can verify that for Ra ≫ 1, we
have a maximum growth rate at a = jπ.
It is interesting to notice that this does
not correspond to the wavelength of the
first mode appearing at the onset of the
instabilities. Indeed, the approach we
made leads to

a
Ra→∞
= jπ +O(

1

Ra
)

(3.20)

It’s quite easy to show (taking Rax =
657.5) that this mode near the onset of
the instability corresponds exactly to the
"first" unstable mode verifying

a(Ra = Rac) =
π√
2

(3.21)

This development for the free-free
boundary layer with fixed temperatures
showed that the first unstable mode is in
fact the fastest one, with, at high Ra,
a self-similarity of the solution between
our insulated case and the fixed temper-
ature one. The rigid-rigid or mixed case
revealed other kinds of anti-symmetric
solutions. Hence, we lost our previous
explicit solutions and will need numerical
calculations [4, 5].

D. Numerical Results

This careful study was mainly moti-
vated by the following results, where we
identify, for our Rayleigh number 104 ∼
106, a modal excitation that was not
in the range of the predicted one at
the onset of the instabilities for free-free
boundaries (3.21). We did not realize
at that time that the thermal boundary
conditions were not exactly the same in

our study. The observations were made
at different times observing the vorticity

ζ = ∇×z u

at a specific height of the fluid for the
horizontal dependency, and at a specific
horizontal position for the vertical depen-
dency. This was done before the over-
turn for fig.3.10a, and during the over-
turn for fig.3.10b.

0.0 0.5 1.0 1.5 2.5 3.0 3.5

ζ(z = 0.4)

ζ ∝ cos(πx + 69.61)

x →

ζ
→

(a) – Scatter plots of the vorticity average over
the depth before the overturn and the corre-
sponding fit and error in red

0.0 0.5 1.0 1.5 2.5 3.0 3.5

ζ(z = 0.4)

x →

ζ
→

(b) – Scatter plots of the vorticity at z = 0.4
during the overturn and the corresponding fit and
error in blue, the red fit is for the fast growing
mode of wavelength π.

0 1

ζ(x = 2)

ζ ∝ cos(πz + 7.86)

z →

ζ
→

(c) – Scatter plots of the vorticity at x = 2 in
the same condition as in fig.3.10a. We recover
the expected π wavelength

Figure 3.10 – Wavelength of the first and
second unstable mode measured in our
simulations in the z and x direction

This leads to the expected results
with a first growing mode of wavelength
π and the second of wavelength 2π. The
second fit is not so precise and exhibits
large errors due to the growth of other
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harmonic modes at the same time. We
previously said that the wavelength of
the instability should be the same in the z
direction due to the insulated boundary.
This is easily verified in the fig.3.10c.

Now that we verified that the modes
unearthed corresponded to the theo-
retical approach. We can study their
growth. To have quick overview of how
the growth rate scales with the mode
number and the Rayleigh we computed
possible modes and their scaling using
3.18. First, one can notice that not all
of the wave numbers can be unstable de-
pending on the Rayleigh number. How-
ever, one can notice that the number of
unstable wavelengths scales rapidly with
the increasing Ra, allowing many more
unstable wavelengths of decreasing scale
(the larger s is, the more a is spread).

0 10 30 40 50
0

2e4

8e4

Ra = 1e + 06

Ra = 3e + 06

Ra = 6e + 06

Ra = 2e + 07

Ra = 4e + 07

Ra = 1e + 08

n →

s
→

(a) – Growth scale over mode number for differ-
ent Rayleigh’s number.

0.0 0.2 0.6 0.8 1.0

×107

2

4

8

10

Ra→

N
→

(b) – Number of unstable modes allowed for a
given Rayleigh number

Figure 3.11 – Modal analysis of the free-
free boundary conditions with one fixed
temperature boundary and one insulated
boundary

This wide spectrum of unstable
modes can be an explanation for the
overturn cascade. Indeed, the higher
the mode, the slower the growth (see
fig.3.11a). Hence, secondary overturns
are possible and will maintain a convec-
tive behavior much longer than expected,
possibly explaining the slow decay scaling
in time of Φtotz=0.

III. Overturn time and scaling

One can be motivated to show that
the overturn time corresponds to the
first mode’s growth rate. Indeed, we ex-
pressed previously the growth rate s as
a function of the wave number and Ra.
We can then compare it to the overturn
time. Indeed, we expect to have:

τOV ≈
1

s
(n = 1)

Since the first mode will be the most un-
stable. For this, we took the time of the
maximum Reynolds number in our sim-
ulations and compared it to the charac-
teristic growth time 1/s. We took the
Reynolds number rather than the Nus-
selt number since the Nusselt number
presents a temporal shift, probably due
to the diffusion time in the boundary
layer. This leads to an almost perfect
linear dependency as depicted in fig.3.12.
However, a surprising factor of 12.5 is
unearthed in the scaling.

1e−4 3e−4 4e−4

1e−3

2e−3

5e−3

6e−3

slope =12.5

s−1 →

t o
v
→

Figure 3.12 – Predicted overturn time
in the modal theory and measured time
Reynolds number maximum, in our simu-
lations

From this, we can draw some sim-
ple conclusions: We found a way to
determine theoretically the time of the
overturn, and despite this factor that is
still unexplained, the overturn time we
consider in the moon corresponds to a
Rayleigh number of ∼ 105, 107, match-
ing quite closely the simulated one (1 or-
der of magnitude below). This overturn
time is much longer than expected. In-
deed, if we rescale the time, we find:

1

s
≈ 1− 10Myr

The difference between the analytical
and simulation results could be found in
the noise ratio used in the simulation.
In the previous study, the time before
the overturn was supposed to be sev-
eral thousand years, allowing us to ne-
glect the diffusion (2.1). However, this
is not the case, and the diffusion should
be taken into account in the model es-
tablished in the previous studies.

CONCLUSION

In the first part of this study, we ex-
plored the effects of two control param-
eters of the overturn that occurred in
the cumulates of the Moon at the be-
ginning of the second cooling phase: the
shape of the profile through a piecewise
linear function mimicking the 1/r3 profile,
and two different values of the Rayleigh
number, one allowing us to better under-
stand the dynamics of the overturn and
the other providing actual results on the
events that occurred on the Moon.

We found that, though the shape
varies up to the linear approximation, the
energy dissipated in the LMO remains
constant, only affected by the Ra, which
reduces it as it increases. However, we
found that the kinematics of the over-
turn were strongly affected by the choice
of e, as an entire order of magnitude sep-
arates the overturn times between the
shallow simulations and the deep ones.
The internal dynamics are also strongly
affected as the local internal flux varies
by several orders of magnitude between
the shallow and the deep simulations.

In the end, we found that the over-
turn occurred somewhere between 23
Myr and 115 Myr after the end of the
first cooling stage, and it spans between
4.5 Myr and 35 Myr, transferring an en-
ergy of the order of 6 Exa-Joules to the
LMO.

In the second part of our study, we
highlighted the impact of the Rayleigh
number on the dynamics, with a first
convective behavior, unearthing bound-
ary layer structures leading to a spe-
cific scaling of the external flux over the
Rayleigh number. We proposed a model
linking the overturn time to the growth
rate of the fastest growing mode, which
matches the observed overturn time, al-
beit with a surprising factor.

Finally, we discussed the implications
of our findings for future models, includ-
ing the need to account for diffusion ef-
fects in future simulations, which could
explain the discrepancy between analyti-
cal and simulated overturn times.
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