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Abstract
This report is devoted to investigation of turbulence characteristics in the TCV tokamak using Short
Pulse Reflectometry diagnostic and Machine Learning approach, focusing on Trapped Electron Mode
(TEM) instabilities and their impact on radial transport. A 1D model initially provided insights, but a
2D model was developed to better account for curvature, incidence angle, and scattering effects. Using
extensive CUWA code simulations, datasets were generated for both Gaussian and power spectrum
turbulence structures accounting for various simulation parameters like the position of the cut-off the
structures of turbulences. The 2D model achieved R2 scores of 0.92 for Gaussian and 0.89 for power
spectrum tests, outperforming deeper neural networks. It effectively managed non-linear effects, delay
characteristics, and cut-off layer shifts.
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Introduction

O ne of the common goals in experimental magnetically
confined fusion research is the characterization of plasma

txurbulence. To achieve this, the TCV tokamak features a
novel short-pulse reflectometry (SPR) diagnostic that can po-
tentially measure the properties of this turbulence. The SPR
diagnostic operates as a radar system. It probes the plasma
with a very short microwave pulse (under one nanosecond),
which reflects off the cutoff (reflection) region back into the
probing antenna. The position of this cutoff, for probing fre-
quencies in the range of 50-75 GHz, is determined by the
plasma electron density. By measuring the time delay be-
tween the probing pulse and the reflected pulse at different
frequencies, the electron density profile, including its turbulent
perturbations, can be inferred. However, the complex inter-
action between microwaves and magnetized plasma makes it
challenging to link SPR measurements with turbulence proper-
ties. Numerical modeling using a simples 1 dimensional model
has been performed for cases with low turbulence amplitudes
(linear regime). The scenario with large turbulence amplitudes
(nonlinear regime) remains unexplored. This project will con-
duct a systematic analysis of the SPR diagnostic in the nonlin-
ear regime. The numerical finite difference code CUWA, which
solves the wave equation for given plasma density and magnetic
field and provides synthetic reflected pulses, will be used. The
main objectives are to identify markers indicating whether the
diagnostic is operating in the nonlinear regime and to assess
the feasibility of determining turbulence parameters.

THEORETICAL BACKGROUND
I. NUCLEAR FUSION

A. Fusion Reaction

Nuclear fusion is the process by which two atomic nuclei com-
bine to form a heavier nucleus. This process is accompanied

by the release or absorption of energy, depending on the masses
of the nuclei involved. Typically, lighter nuclei release more en-
ergy because the short-range nuclear force is overcome more
easily for light nuclei.

However, to overcome the Coulomb barrier, the nuclei
must be brought close enough together for a long enough time
to allow quantum tunneling to occur. To achieve this, the reac-
tants must be heated to extremely high temperatures, ionizing
them and turning them into plasma. It has been found that
the probability of collision, or cross-section, is highest for the
Deuterium-Tritium mixture.

D2 + T3 → He4 + n[17.6 MeV]

B. Tokamak confinement

A key component of the fusion process is the duration for
which the plasma can be effectively confined. This confine-
ment can be achieved through various methods. One of the
most promising and well-established approaches is the Toka-
mak vessel, which employs magnetic confinement to maintain
the plasma in a toroidal shape. The plasma is heated to several
million degrees, allowing the fusion reaction to be sustained.
The energy released from the fusion reaction is used both to
heat the plasma and to sustain the reaction.

The energy balance in a Tokamak is governed by the Law-
son criterion, which compares the energy confinement time to

the energy loss time. The energy confinement time depends
on the plasma density and temperature, while the energy loss
time is determined by the plasma’s losses.

nτE ≥ 1.5.1020s.m−3

Figure 1.1 – Simplification of Tokamak device, the toroidal
magnetic field is generated by coils, while the poloidal mag-
netic field is produced by the plasma current and poloidal field
coils. The plasma is heated by various devices, enabling the
fusion reaction to be sustained.

This confinement is realized by applying a strong magnetic
field in the toroidal direction. The magnetic field is generated
by a set of coils, which are arranged in a toroidal shape, and
the plasma is heated by various methods [1]. The neoclassical
geometries in the Tokamak lead to several physical phenomena
such as charge separation in the Tokamak, drift kinetics, and
turbulence. The curvature and gradient of the magnetic field
[2] imposed by the geometry lead to drifts, which requires a
poloidal magnetic field component in the Tokamak to counter-
act this effect. This twist in the field lines is the safety factor
is defined as:

q(Ψ) =
1

2π

δχ(Ψ)

δΨ
≈ Btor r
BpolR

,

With χ being the toroidal magnetic flux, and Ψ the poloidal
magnetic flux. This safety factor is one of the most important
measures in the Tokamak since the induced magnetic prop-
erties on the rational magnetic surface 1 are of paramount
importance for the confinement of the plasma. Indeed, we can
define the shear stress as ŝ = r

q
dq
dr
, which measures how much

the magnetic field lines are twisted along the small radius of
the Tokamak. This shear explains why the turbulences grow
on rational surfaces (no Landau Damping k · B = 0, [3]), and
how they are damped into larger scale flow (zonal flow) [4].

Indeed, the consideration of the magnetic surfaces is also
crucial for solving Ballooning equations in toroidal geometry,
as it drives the definition of the toroidal functions of Balloon-
ing modes. Every discussed instability can be expressed using
toroidal geometry in the Ballooning space [5, 6]. Addition-
ally, the safety factor provides insight into the strength of the
toroidal current, which follows the q-profile (maximum in the

1Only rational values of the safety factor allow periodic field lines
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center). This explains why the toroidal velocity of particles
is lower at the edge than in the center, which allows some
particles to be trapped in banana orbits.

II. TRANSPORTS IN TOKAMAK

Anomalous transport is a crucial subject in Tokamak re-
search; indeed, it causes a significant drop in energy confine-
ment due to an enhanced particle radial flux. Here we will
study micro-instabilities, i.e., small-scale turbulences (gyro-
Bohm scaling [4]), whose radial transport is very high and
largely controlled by low-frequency modes [6]. For these types
of instabilities, the study is based on Kinetic Vlasov theory.

Several types of micro-instabilities exist, including TEM,
ITG, and ETG instabilities. These instabilities cause a trans-
port of energy from the core of the plasma to the edge, where
it can be evacuated. The largest transport in the TCV is due
to the unstable TEM mode [7, 8]. This mode results from
the resonant interaction between trapped electrons and Drift
Waves (DW). It can be collisionless or dissipative; essentially,
the trapped electrons are transferring energy to the growing
wave.

A. Trapped Particles and Drifts

There are two types of kinetic behavior for electrons in the
tokamak: run-away or passing and trapped electrons. The ma-
jority of electrons are passing because to be trapped, electrons
must satisfy v∥ ≪ vth [9][10]. However, trapped electrons
have a transit time much longer than passing ones, leading
to greater interaction with drift waves (DW). These different
behaviors regarding the DW lead to small-scale instabilities.

a) Trapped Particles

For a collisionless plasma where ν ≪ w , with ν being
the collision frequency and w the frequency of the considered
wave, the main radial transport is caused by particles with low
parallel velocity. Indeed, when the toroidal component of the
magnetic field is much larger than the poloidal component,
|BΦ| ≫ |Bpol |, the magnetic field B in a torus can be approxi-
mated by :

B ∝ 1

R − R0
In the (r, θ, z) coordinates, this becomes :

B = B0

[
1− r

R0
cos(θ)

]
Considering the toroidal drift, we derive the following equa-

tions using the guiding center equations [9] :

d

dt

(
r +

m

qBp
v∥

)
= 0, r − r0 = − m

qBp
v∥

Here, r0 indicates the position of the turning point where
the mirror effect occurs [11]. To be trapped, the particle’s ve-
locity should satisfy v∥ ≪ v⊥; more precisely, from an energetic
approach [10]:

0 ≤ v∥ ≤
√
2ϵv⊥

With ϵ = r/R0. This partially explains why the velocity
distribution of the electron [8, 10] is modified from a Boltz-
mann distribution to a more complex one, resulting in a drop in

conductivity (Spitzer conductivity). This also explains why the
TEM dissipative and collisionless modes are highly localized in
the trapped electron region.

Figure 1.2 – Trapped particle motion in the Tokamak exhibits
a banana shape due to the toroidal magnetic field. The par-
ticle is trapped in the magnetic well and can interact with the
drift wave (DW). The second figure shows a cross-section of
the torus, projecting the banana orbit of the particle (From
[9, 10]). If a wave resonates with the particle at a lower
frequency than the particle’s transit time, the particle can
exchange energy with the wave in a quasi-adiabatic manner
(see Drift Waves section).

b) Drift waves

Electron DW instabilities that are at stake here are gov-
erned by the Hasegawa-Wakatani [12, 13] equation. This
equation arises due to the non-adiabatic response of the elec-
trons, meaning that the equilibrium is not reached after each
oscillation of the wave. It is derived from a simplified version
of the drift kinetic equation from Vlasov theory. Therefore, let
us recall the general form of the H-W equation :{

ρ2s
d
dt
∇2⊥Φ = D∥∇2∥(Φ̃− T ñ

|e|n0 )
1
n0

d
dt
ñ + vr

n0
∂rn0 = D∥∇2∥(Φ̃− T ñ

|e|n0 )
. (1.1)

With ρs denoting the ion sound radius, D∥ the parallel dif-
fusion coefficient2, Φ the electrostatic potential, ñ the density
perturbation, vr the radial velocity, n0 the equilibrium density,
T the electronic temperature, and e the electron charge.

In the adiabatic limit [14], where particles diffuse faster
than the wave, we can assume a simple Boltzmann distribu-
tion of electrons with a small perturbation:

ñ

n
≈ |e|
T
Φ̃ + h̃

This leads to the Hasegawa-Mima [15] equation under the
assumption: vthi < w

k∥
≪ vthe .{

ρ2s
d
dt
∇2⊥Φ̃ ≈ 1

n0

(
dñ
dt
+ ˜vr∂rn0

)
∂t
|e|Φ̃
T
+ ∂t h̃ − ρ2s ddt∇2⊥Φ̃ + v ∗∂y

|e|Φ̃
T
= 0

(1.2)

2The parallel diffusion coefficient provides insights into the electrons-ions collision frequency: D∥ =
v2
the
νei
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With v∗ = ρscs/Ln, where Ln is the gradient scale of the
equilibrium density −∂rn0/n0, we obtain the following disper-
sion relation for the drift waves, where wr is the real frequency
of the wave and γ is the growth rate (the imaginary part of
the frequency):

ωr =
w∗

1 + k2⊥ρ
2
s

,
γ

wr
= π
wr − w∗
k∥ve,th

We denote w−w∗
k2⊥ve,th

as the non-Boltzmann factor for electron

drift waves. It is important to note that this study is indepen-
dent of trapped electrons; hence, the growth rate is relatively
low. However, when the transit time of electrons increases
(due to trapping), we find [16] that the non-Boltzmann fac-
tor increases, leading to a higher growth rate. This is notably
because of the introduction of wD,e , the electron curvature
drift frequency. For collisionless trapped electron modes, the
non-Boltzmann factor is given by:

w − w∗
we,D

e−R/Ln
√
R

Ln

which is definitively larger than the non-Boltzmann correction
factor for electron drift waves.

This leads to the following growth rate:

γ

wr
= iπ

w − w∗
we,D

e−R/Ln
√
R

Ln

explaining why CTEM (Collisionless Trapped Electron Modes)
are much more unstable than classical electron drift waves.
It also explains why the main instabilities are located in the
banana region, where the coherence time of electrons is signif-
icantly longer. Similar conclusions can be drawn for the Dis-
sipative Trapped Electron Mode [14]. These instabilities lead
to an inverse cascade of energy (Kolmogorov), contributing to
highly nonlinear interactions with mesoscale structures (zonal
flows) [6, 7, 16].

Figure 1.3 – Cross-section view of a Tokamak with negative shear flow - On the left, we have the Fourier Ballooning mode
with n = 6, characteristic of the TEM mode, presenting a characteristic tilting of the wave vector k⊥ and radial translational
symmetry. On the right, we have a simulated TEM mode with similar shape characteristics, noting the presence of multiple
modes, teared and more tilted by the zonal flow. This is explained by the nonlinear interaction between these two types of flow
(reproduced from [17, 18]).

B. Radial Transport

These micro-instabilities are strong candidates for explain-
ing high radial transport. As previously discussed, resonating
trapped electrons can induce significant fluctuations in the den-
sity field and magnetic pressure. Specifically, the radial particle
flow does not vanish as expected; instead, there is a substan-
tial contribution from resonant trapped electrons to the mean
transport [16]. This radial dependency is the only density de-
pendency retained for the following section.

III. WAVE PROPAGATION IN PLASMA

A. Plasma as a Medium

To study the density profile, various diagnostic methods
are available, such as Doppler Reflectometry, RCDR, and Short
Pulse Reflectometry. In this study, we will focus on Short Pulse
Reflectometry (SPR). This method involves probing the mag-
netized plasma with a short Gaussian pulse (less than 1 ns)
of microwaves operating in the time domain at a fixed fre-
quency and normal incidence relative to the cut-off surface.
The variation in the delay of the reflected pulses is analyzed.
The probing signal is sensitive to density variations, as these
changes affect the cut-off position. Thus, SPR can provide
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deeper insights into the characteristics of turbulence.

B. Wave Equation

Assuming a monochromatic electromagnetic wave and us-
ing Maxwell’s equations, we can derive the local complex di-
electric tensor and the wave equation considered:

∇2E − ∇⃗∇ · E = −ω2
c2
ϵ̂E

ϵ̂ik = δik − 4πi
ω
σik

}
(1.3)

With σik representing the conductivity tensor, several as-
sumptions have been made to establish this equation: linear
Ohm’s law is applicable, the plasma is considered cold [7], and
the chaotic motion of the particles, implying the neglect of ki-
netic effects, is disregarded. To simplify the problem further,
we assume the plasma to be stationary and neglect all forms
of damping. In a Cartesian coordinate system with the z axis
aligned with a constant magnetic field,

B⃗ = B0e⃗z ,

we can derive the following dielectric tensor
[Thomas H. Stix]:

ϵ̂ =

(
ϵ ig 0
−ig ϵ 0
0 0 η

)

With : ϵ = 1 − ω2pe

ω2−w2ce
, g =

wcew2pe

w(w2−2ce )
− wciw

2
pi

w(w2−w2
ci
)
; η =

1 − w2pe
w2
− w2

pi

w2
; wpi =

√
4πne2

mi
; wci =

eH
mi c

Here, ωpi,e de-

notes the plasma ion (resp electron) frequency and ωci,e is the
cyclotron frequency for the ion (resp electron) species. Since
we are dealing with microwave frequencies, we will consider the
electron component as preponderant in the subsequent study.
The wave equation can thus be simplified to the following:

(Syz − ϵ)Ex − igEy − ΠxyEz = 0
(Szx − ϵ)Ex + igEx − ΠyzEz = 0
(Sxy − η)Ez − ΠxzEx − ΠyzEy = 0

 (1.4)

Defining : Si j = N2i + N
2
j ; Πi j = NiNj ; Ni =

kiw

c
For the

SPR study the wave is perpendicular to the external magnetic
field, hence we can simplify the system to the following :

(N2y − ϵ)Ex − igEy = 0
(N2x − ϵ)Ey + igEx = 0
(Sxy − η)Ez = 0

 (1.5)

Which leads to two different types of solution respectively
the ordinary mode (O) and the extraordinary mode (X ).

O X

Sxy − η = 0 (N2y − ϵ)Ex − igEy = 0
Ey = 0 (N2x − ϵ)Ey + igEx = 0
Ex = 0 Ez = 0

The O mode corresponds to the mode with the electric
field parallel to the external magnetic field. Therefore, the
propagation of this mode depends solely on the density pro-
file and is independent of the magnetic field. In contrast, the
X mode has the electric field perpendicular to the external
magnetic field. Consequently, the propagation of the X mode
depends on both the magnetic field and the density profile.

The dispersion relation of the wave can be derived locally
from the wave equation. We obtain:

k2 =
w 2

c2
η ≈ w

2

c2

(
1− n
nc

)
; nc =

mew

4πe2
(1.6)

Here we can see that the wave number vanishes at n = nc ,
which is the cut-off layer where the wave is reflected. The
k-spectrum of the X mode is much more complicated and in-
cludes plasma resonances where thermal effects must be taken
into account. For this study, we will limit ourselves to the O
mode.

From solving the Helmholtz equation (local dependency of
the wave number):

∂2Ez
∂x2

+ k(x)Ez = 0

Qpplying the WKB approximation (slow variation of the
plasma parameters), i.e., assuming a solution of the form
Ez = A(x) exp(iΦ(x)), with A varying slowly and Φ varying
quickly, we can derive the following expression for the electric
field:

Ez(x) =
Ez√
c
ω
k(x)

exp

(
i

∫ x

0

k(x ′)dx ′
)

The WKB approximation will be used in the one-
dimensional approach (see Chapter 2) and can be used in the
CUWA code for computing ray tracing in order to adjust the
size of computation Yee cells [19] and the computation do-
main.

IV. CUWA CODE OVERVIEW

The CUWA code is a GPU-based computation scheme
with a Python-CUDA framework, using a finite difference
scheme for spatial dependency applied to the three different
fields: E, B, and J, along with the well-known leap-frog time
stepping. It is used to simulate the propagation of electromag-
netic waves inside a "cold plasma". The spatial finite differ-
ence scheme is based on the FDTD Yee’s method [20], with
slight modifications. It solves the discrete version of Maxwell’s
equations with a cold plasma current response J:

∂
∂t

B = −∇× E
∂
∂t

E = c2∇× B− J
ϵ0

d
dt

JνJ = ϵ0w 2pE− J× wc
(1.7)

with wp the electron plasma frequency, ν the electron collision
frequency, and wc the electron cyclotron frequency. To limit
the computational cost, the computation domain is amended
with a convolutional perfectly matched layer (PML) to en-
sure that any reflected signals are minimal (well-used in open
boundary systems). It can be viewed as a sponge layer for
electromagnetic waves.
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Figure 1.4 – SPR setup using the O. Krutkin and A. Combette LEONARDO simulations from the CUWA code. The probing
wave is sent to the plasma, and the reflected wave from the cut-off is measured. The delay between the two waves provides a
measure of the plasma density profile, in addition to the pulse shape altered by the turbulence (eq). Here we plot the contours
of the density profile, with cold density perturbations (black contour lines on the left plot). The probing wave is reflected by
the cut-off layer (initial probing wave on the left and after a ∆t ≈ 10 ns we get the reflected scattered wave on the right). The
third plot on the right shows the density profile with its perturbations (filled). A linear density profile

n(x, y) =
x

L
(nc + δn(x, y))

has been chosen according to (cite). Note that this linear correction made on the amplitude of the turbulence fields follows
from the non-adiabatic perturbations [16] and numerical instability, and is more relevant than a simple constant amplitude
turbulence field. The curvature of the grid has been set to R = 0.25m to mimic the TCV geometry.

V. LINEAR REGIME STUDY

The goal of this study is to find a way to link the plasma
density perturbations to the reflected pulse characteristics.
First, we will study a simple 1-dimensional model proposed by
Oleg Krutkin applied in a given range of turbulence amplitudes
and sizes, and then we will extend this study to a more general
2D model using the CUWA code.

Assuming a simple plasma density profile n(x), we can
study the wave propagation in the plasma. The goal of this
approach is to find a way to link the plasma density perturba-
tions to the reflected pulse delay. To retrieve information about
the pulse delay, we will use a statistical approach to account
for the randomness introduced by perturbations.

The delay of the probing wave is given by the following
formula:

τc = 2

∫ L

0

dx

vg
,

where vg is the group velocity of the wave, and L is the position
of the cut-off.

From the simple assumption ⟨δn⟩ = 0 for an Ordinary
mode, the vg expression obtained can be used to expand the
integral to:

2

c

∫ L

0

dx√
1− x

L
− δn
nc

.

The main contribution of this integral comes from the vicinity
of the cut-off layer, where the group velocity is the smallest.

We can discuss the relevance of this expansion as the
main contribution of the integral comes from the cut-off region
where the WKB approximation cannot be applied.

A. Perturbed Density Profile

a) Step-like Perturbation

Model With a step-size perturbation characterized by lcx
length, we can derive an analytical expression for the integral
for different density profiles. To simplify, we assume the per-
turbation is small enough such that the WKB approximation
can be applied. This is valid for the linear regime, where the
perturbation is small enough such that the cut-off layer is not
significantly perturbed (i.e., δx ≪ lcx). In the case of a large
perturbation, another step perturbation localized far from the
cut-off layer can be used to obtain similar results, though this
breaks the main assumption of this approach (see fig.1).

It is relatively straightforward to obtain the following ex-
pression for the delay [cite Krutkin]:

τd =
4L

c
− 2L
c

√
L

lcx

δn

nc
.

The statistical approach is to consider the perturbation as
a random variable and compute the statistical properties of the
delay of the probing wave. This approach is relevant for the
linear regime, where the perturbation is small enough such that
the cut-off layer is not significantly perturbed (i.e., δx ≪ lcx).
For example, we can compute the standard deviation of the de-
lay depending on the standard deviation of perturbations. This
yields:

στd ≈
2L

c

√
L

lcx

σδn
nc
.

To test this assumption, we can compare the analytical
expression with the numerical integration of the wave equation
for numerous Gaussian perturbations with characteristic length
lcx and various amplitudes δn, as depicted in Figure 1.6.

5 Andrea Combette

https://github.com/Chatr0uge/Internship_SPC


CHAPTER 1. THEORETICAL BACKGROUND REPORT ENS | SPC | EPFL

Figure 1.5 – Here we plot the density profile of the plasma for different perturbation amplitudes: in grey, the step-like model
perturbation and in coral, the Gaussian one. For large value density perturbations, the model leads to a contradiction with its
assumption δx < lcx or δn < nc lcxL , indicated by a small cut-off layer shift. The blue Pb wave is the probing wave, the red Rbp
wave is the reflected one, and the black Rbn wave is the normal reflected wave in the absence of perturbation.

One sample of density fluctuation is produced using the
following formula, to match a supposed gaussian spectra of
instabilities :

δn(kx) =
δn0lcx√
8π
exp

(
− (klcx)

2

8
+ iΦ(k)

)
with Φ(k) a random phase, k the radial wavenumber of the
density perturbation and δn0 the amplitude of the perturba-
tion, this amplitude can be taken constant or dependant of the
radial position according to the kind of profile we use. Then
we inverse fourrier transform this density perturbation to get
the density profile in the real space. Finally, for each sample,
the delay is then numerically integrated from the formula [cite
delay], using simple trapezoidal integration.

Results The results are shown in Figure 1.6. The simulated
deviation of delay which serves as reference (black crosses) was
computed from 10,000 samples to ensure statistical stability,
using a 50 GHz probing wave and a 2L integration domain.
This setup allows us to account for negative perturbations near
the cut-off, as multiple perturbations near the standard cut-off
might strongly shift it. The plain black line represents the first-
order approximation of the formula [eq], while the dashed line
denotes the third-order approximation of the second formula.

For reproducibility, the parameters of the 1D simulation
used to build the considered datasets are given below:

Parameters range

δn0 lcx -[cm] L -[cm] Nx n

[1e−3, 1] [0.1, 1] [7, 20] 5000 10000

The second-order analytical formula exhibits a characteris-
tic drop-off after reaching a critical amplitude value, similar to

the simulated delay. This suggests that expanding further the
στd could improve handling of the non-linear domain. However,
discrepancies are observed for large perturbations in the non-
linear regime, though the analytical expression provides a good
approximation for small perturbations, except for very tiny ones
( δn0 ≤ 1e − 3 )[cite].

Note that the critical value can be defined in two ways
[21] and sets the threshold for what could later be considered
the non-linear regime. Indeed we can consider the critical am-
plitude of turbulence as the densoty threshold where the 1D
model is not applicable i.e when :

δn ≥ nc lcx
L
= nc1

This first approach does not consider information about the
scattering of the pulse, which leads to extinction of the prob-
ing line and saturation of the scattered signal power [21]. This
random non-linear scattering effect has already been studied
for RCDR and DR theory [22], and leads to thefollowing for-
mula :

δn

nc
≫ c

w
√
lcxL ln

L
lcx

= nc2

In our case, the second critical value nc2 is below nc1, and
we will see that it will influence the future parametrization of
our model.

A correction factor dependent on the turbulence spectrum
used should be introduced to achieve better agreement with
the numerical integration. This factor has not been studied
yet but highlights the limitations of the current step-driven
1D model. 3 As highlighted before, the non-linear regime is
strongly related to scattering effects, which are not consid-
ered in this approach. Additionally, density corrugations can
reach up to 100% of the density value near the cut-off [7, 16],
especially since the adiabatic and non-adiabatic components
of the electron response have the same potential dependency

3The integration of the Gaussian integral was also tackled, with a second-order bell-approximation, leading to logarithmic
dependencies over the plasma parameters. However, the formula was too complex to exhibit the statistical properties of the
delay, as referred to in the appendix.
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[16]. Therefore, the non-linear regime is significant, and a
sufficiently precise model is necessary to evaluate turbulence
amplitudes in the NL regime.

10-4 10-3 10-2 10-1 100

σ(δnnc
)

10-11

10-10

σ
(τ

d
) 

- 
[s

]

NL regime

nc1nc2
1D modeling of the delay

1st order

 2rd order

simulated

Figure 1.6 – 1-dimensional predicted amplitude of the ana-
lytical 1st and 2nd order step-driven model, compared to the
simulated 1-dimensional delay (see eq: 1.6). A constant δn0
has been used for the density profile.

Hence, the first issue that arises is finding a good
parametrization of the model, i.e., identifying the best statis-
tical metrics to predict the amplitude of the turbulence. This
study will use several profiles of density perturbations ampli-
tudes δn0 to determine if the model we build is sufficiently
robust to adapt.

1-DIMENSIONAL MODEL

The first model we developed relies on the 1-dimensional
integration of the delay. For this simple model, we can only
use the pulse delay’s statistical properties. Several options were
tested, including studying the quantile distribution of the de-
lay, its histogram, and various statistical properties. The study
involves a simple multi-dimensional regression problem where
we attempt to estimate the amplitude of the perturbation and
the non-perturbed delay of the probing wave (i.e., without the
turbulence fields) for several density profiles. To address this,
we used a stacked regressor combined with a multi-output re-
gressor.

I. RELIABLE METRICS

To train our machine learning model, we need clear data
with the best input possible. First, let’s examine the character-
istics of the delay. To get a general overview of the influence
of the turbulence amplitude δn0 on the delay characteristics,
we study the distribution of the delay as a function of the am-
plitude. This is illustrated in the following plot.

3e-04 4e-03 3e-02 3e-01 2e+00

δn0/nc -[NU]

Normalized Delay Violins

2d 1d

Figure 2.1 – Violin plots of the delay distribution over δn0.
For a straightforward initial approach, we selected a simple
linear profile with δn0 independent of the radial position. The
left side of each violin represents the 2D distribution of the
delay for comparison.

The first observation is that the delay distribution is signif-
icantly affected by the amplitude increase. As the amplitude
grows, the mean delay decreases (which is expected, see fig
3.11, [23]), and the standard deviation of the delay increases
before decreasing when the non-linear regime is reached. Ad-
ditionally, the distribution becomes more skewed until reaching
the non-linear regime charcterized here by the first critical value
nc1 , this broadening suggests that studying the moments of
the delay distribution could also be a useful method for pre-
dicting the amplitude level.

The two simulation sets exhibit similar behavior, but dis-
crepancies arise at high amplitudes. Specifically, the 1D sim-
ulation set shows more erratic distributions compared to the
2D simulation set, raising questions about the convergence of
the 1D integration (see: 1.6). It is noteworthy that the critical
density identified in this plot is the first critical density (CITE),
which is crucial for constructing a qualitative dataset. Despite
these concerns, the delay study appears to provide a reason-
able estimate for amplitude levels in both simulation sets, even
without analyzing pulse shapes as done in the 2D model.

II. MACHINE LEARNING MODEL

The machine learning model will be trained to predict the
amplitude δn0 and the default delay without amplitude τ0, us-
ing a one-dimensional training set and tested on both one-
dimensional and two-dimensional test sets.

A. Structure

The regression model we used is a stacked multi-output
regressor.
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DATASET

KNN GB LGBM XGB SVRT RF

RFRegressorChain

τ0 δn0
Figure 2.2 – Stacked Regressor structure with a global regres-
sor chain. The internal structures of the multiple regressors
are not detailed for simplicity. Each model was tested on
several datasets, and their combination is key to the perfor-
mance of our predictions, especially in extreme cases with
high or low turbulence amplitudes.

The following table describes the hyperparameters used for
the stacked model.

Model Hyperparameters

KNN n_neighbors : 20

RF
n_estimators : 300

max_depth : 40

GB
n_estimators : 200

lr : 0.005

LGBM
n_estimators : 200

lr : 0.005

XGB
n_estimators : 200

lr : 0.005

SVR

kernel : ’rbf’

C : 1

epsilon : 0.01

Table 2.1 – Main Hyperparameters used for the stacked
model, the error used is not detailed as long as the perfor-
mance tweaks

Our model combines the following models: K-neighbors
(KNN), Random-forest (RF), three different Gradient-Boosting
(GB, LGBM, XGB), and Support Vector Regressor (SVR). It is
designed to be as general and versatile as possible. The six
models are trained in parallel on the same training datasets
and then combined in series with a decision regression model,
which, in our case, is a final RF layer trained on the outputs of
the previous layers. Normally, Gradient-Boosting models can-
not handle multi-output regression, which is why we used a

multi-output RegressorChain. This model trains to predict
the first entry and then predict the second given the first pre-
diction. This allows for incorporating a dependency between
the different outputs, which should not be the case here, so a
simple MultiOutputRegressor should suffice. Note that the
score of the final model cannot be lower than the score of the
best individual model.

III. INPUT DATA

IV. DATASETS BUILDING

For the 1D-based trained model, we can only use the de-
lay distribution as input variables. We tried several moments
of the distribution as input (mean, variance, skewness, etc.),
combined with the discretized delay distribution. We tested
two types of discretization: the binned distribution (i.e the his-
togram of delay) and the quantile distribution. However, we
obtained better results with the quantile study of the distri-
bution, coupled with the moments as inputs. This approach
allows the model to have a direct connection between the out-
put τ0 and the quantilized distribution. We first noticed an
increasing of accuracy of models with the increasing of the
number of quantile until 30 quantiles, when the efficiency of
the model begins to saturate and decrease. This is why we
used 30 quantiles to discretize the distribution in both cases.
The 1D simulation set was then processed, split into a training
and a testing set (80/20 ratio), and finally standardized. The
amplitude parameter was used with its logarithmic value be-
cause it was found to be more efficient. Thus, we arrived at a
final input shape of 33 features and approximately 3000 sam-
ples, including the L and lcx parameters in the input data. For
the 1D simulation, we introduced a random shift in the delay
distribution for each sample. If we did not do this, the model
would learn the τ0 value from the highly correlated parameter
L (originally, L is linear with τ0), which might not be the case
in experimental data, where L can represent the gradient scale
at the cut-off [7]. For this study, we used several density pro-
files to see if they impact the learning process of the model.
For the 1D simulations, the dependency over y is dropped.

For the linear background profile, the global density profile
will be:

n(x, y) = nc
x

L
+ δn(x, y).

Here, δn is the normalized 2D Gaussian turbulence profile.
For the quadratic background profile, L represents for the

gradient scale at the cut-off, and δn0 is the turbulence ampli-
tude profile. We used the following formula to get a gradient
value of 1 at L:

n(x, y) = nc

[
1.25− (1.5L0 − x)

2

L20

]
+ δn(x, y).

The negative values of the profiles are then shifted to zeros
to prevent unphysical events, which has the effect of creating
a larger vacuum layer in the simulations, and then a shift of
the delay distribution. This explains partially why our model
need to decorlate the delay from the L parameter. The depen-
dency of δn0 will take several forms, from constant to linear,
quadratic, or exponentially weighted [21]. This scaling of the
turbulence is done to mimic the true turbulence profile (REF)
and to avoid the unnatural predominance of turbulence while
working with small amplitudes. This exploration of the density
profile is motivated by the fact that at the edge of the plasma,
the relative amplitude of the turbulence profile is higher than
in the core of the plasma.
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For reproducibility the parameters of the 1D simulation
are given below. A grid was employed to ensure homogeneous
learning across the entire parameter space, potentially leading
to stepped regression with constant values between points in
the space.

Parameters range

δn0 lcx -[cm] L -[cm] Nx n

[1e−3, 1] [0.1, 1] [7, 20] 5000 10000

Table 2.2 – Range of parameters used for the 1D simula-
tions. Ranges of the parameters are indicated by [], we use
20 points for the amplitude, 13 for the correlation length and
6 for the gradient scale.

V. RESULTS

To evaluate the model we studied the residuals for each
parameter value in the testing set. This approach provides a
quick overview of the model’s performance and the impact of
parameter values on the model’s accuracy, and is deppicted in
the following figure.
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Figure 2.3 – Plot of the amplitude residuals of the model for
the 1D testing set, the residuals are meaned given a value of
the studied simulation’s parameter. The filled curved repre-
sents for the amplitude residuals exponentially rescaled to the
real amplitude value, The red line in the center of the plot is
the τ0 mean residuals, far bellow the mean amplitude resid-
uals. The second smaller polar shows the comparison of the
residuals for several daasetets : the plot of the mean ampli-
tude residuals for the 2D datasets (black dashed curve), the
amplitude residuals for the 1D datasets (blue curve in the
center), and the plots of the residuals for the 2D datasets
shifted to the 1D delay distribution (green curve). The black
points around the circle show the values taken by the param-
eters

The relative residuals are estimated using the following
formula :

res =
δnpred
0 − δntrue

0

δntrue
0

We reached a final score of 0.94 without the moments and
0.96 with the moments on the 1D test datasets. However, with
the 2D datasets, the results are catastrophic. The model gen-
erally predicts an amplitude level one order of magnitude below
or above the actual value.

The figure 2.3 reveals quite good results for the 1D model
prediction on the 1D testing simulation datasets. The pre-
dicted values are generally of the same order of magnitude
as the real ones, and the residuals are well-distributed across
all simulation parameters, which is encouraging. However,
when generalizing the model to higher dimensions, specifically
2D simulations, we encounter very poor results with a mean
amplitude residual value of 10 for any simulation parameters,
this means that the predicted value is one order of magnitude
above the true value. This discrepancy can be To evaluate the
model we studied the residuals for each parameter value in the
testing set. This approach provides a quick overview of the
model’s performance and the impact of parameter values on
the model’s accuracy.attributed to the fact that 1D simulations
do not account for multiple scattering effects in the nonlinear
regime (see 1.6). Notably, in the nonlinear regime, the 1D
testing simulation datasets show that the model performs sig-
nificantly better than the analytical approach. Nevertheless,
one can question whether the delay distribution between 2D
and 1D cases is similar. For the same 1D parameters, there
is a shift in the mean value of the delay between 2D and 1D
simulations. This shift is due to the added void layer around
the computation domain in the 2D simulations [21] and the
fact that the pulse is not launched at t = 0. If we adjust the
2D simulation delay datasets to match the 1D simulation delay
(though this adjustment is debatable), we achieve quite a good
score even in the nonlinear regime (this observation was made
with a flat 2D geometry and does not account for crucial 2D
simulation parameters such as the probing angle or the curved
profile). The residuals are approximately twice the amplitude
value, which is relatively good considering the logarithmic scale
of the amplitude during the training process.

However, investigating pulse shape with different charac-
teristics could lead to better results. Such an approach would
allow us to account for multiple scattering effects and the dis-
persive effects of the plasma.

2-DIMENSIONAL MODEL
Considering a 2-dimensional model allows us to take into

account several interesting effects that play a significant role
in the SPR diagnostic. Indeed, the 1D model restricted the
study to delay distribution. With the CUWA 2D simulations,
in addition to the delay, we can study the pulse shape and its
statistical properties. Furthermore, this additional dimension
supports the curvature 1

R
study implied by the tokamak ge-

ometry. We can also adjust the probing wave incidence angle
θ.

I. PULSE SHAPE STUDY

The goal of the pulse shape study is to find the best met-
rics that carry the most information regarding pulse shape char-
acteristics. We will study the evolution of the pulse amplitude
over the increasing of the turbulence ampliude, the number
and the assymetry of scattered pulses, and their impacts on
the final recording (broadening of the mean pulse), etc. This
will help in building a more accurate model without adding ex-
cessive dimensions to the input layer.
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A. Relative Study of Pulse Shape

For this part of the study, we will limit ourselves to a sim-
ple slab geometry with normal probing, without considering any
curvature or incident angle. The pulse shape can provide infor-
mation about the plasma density profile, as it can be modified
by perturbations due to multiple scattering effects and disper-
sive effects [see 1.6].

Figure 3.1 – Normalized mean of centered reflected pulse sig-
nal for several density profiles. ND represents a linear density
profile with a linear dependency of δn0 over x , LD is a simple
linear density profile with a constant turbulence amplitude,
QD is the quadratic density profile, and ND 2500 is a 2500-
sample simulation (the amplitude range is not respected for
this one due to computation cost).

The dependence of the pulse shape on the background
density profile has also been studied with linear, quadratic, and
linearly modified perturbation profiles detailed in the dataset
building part. We observe a much larger and more randomly
dependent pulse at high turbulence amplitudes. Indeed for all
density profiles, the pulse shape becomes broader for larger per-
turbations, the gaussian pulse shape is deformed with a peak
that is shifted to the higher delay. The reader will note that
the increasing of the amplitude of the turbulence still leads to
diminution of the mean delay.

In this regime the reflected pulse is a superposition of all
scattered pulses . When we average all the pulses this resulst
in a growing tail in both delay distribution and pulse shape.
This was shown for the delay distribution in the fig 2.1 with
the characteristic broadening process of the delay distribution.
This broadening is also due and dispersive effects. From this
overview of the normalized mean pulse shape, it is evident that
an interesting metric for our model should measure how much
the mean pulse is skewed. This can be characterized by study-
ing the mean skewness of the pulse shape. Another interest-
ing parameter to highlight is the asymmetry of the normalized
mean pulse (i.e., the ratio of the right area to the left area of
the pulse).

Figure 3.2 – Here we computed the skewness µ3 and the
asymmetry A of the mean pulse for the previously discussed
density profiles. As expected, the skewness of the pulse in-
creases with the profile complexity, while the evolution of
asymmetry is even more pronounced. It is important to note
that both metrics are significantly influenced by the second
critical density value [7], where multiple scatterings become
non-negligible.

The two last metrics seem to be relevant input vari-
ables to describe the relative evolution of the pulse shape
with respect to the amplitude indeed in present clearly a
distinguishable behavior in the Non Linear regime, which
should help our model to characterize it. To confirm that
the multiple scattering was the main cause of the broad-
ening of the pulse, we also studied the evolution of the
number of reflected pulses, their amplitude etc...

10−2 10−1 100

amplitude - [NU]

1.0
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1.4

1.6

Number Spikes

Figure 3.3 – Mean number
of spikes over the ampli-
tude of the turbulence for
the quadratic density pro-
file QD.

This was done using the
SpikeWizard library, a on pur-
pose built Python library de-
signed to detect spikes in a
signal and to fit peaks with a
given function (here gaussian).
This study leads to good corre-
lation between the number of
reflected spikes and the previ-
ous characteristics of the pulse
shape. Indeed as we can see
in fig 3.2 the number of spikes
behaves the same as the asym-
metry calculated, with an im-
portant increasing of the num-
ber of detected spikes at the
second critical density value
and a critical drop when δn0
reaches the order of n0. This
implies that the multiple scat-
tering is indeed the main cause
of this characteristic broaden-
ing.

After studying the evolu-
tion of the normalized mean
pulse shape, we analyzed the
statistical properties of the
pulse shape to identify relevant metrics for our model.
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B. Statistical Study of Pulse Shape

Figure 3.4 – Violin plots of the pulse root mean square (rms),
amplitude, and width distributions over perturbation ampli-
tude. The simulations considered a linear density profile back-
ground (LD) with a spatially independent δn0.

The distribution of the pulse RMS and amplitude becomes
broader during the transition regime. This broadening is due
to the randomness introduced by the perturbations, which per-
sists at large amplitudes, even though the distribution stabi-
lizes. Both the amplitude and RMS of the pulse are highly
correlated, reflecting similar dependencies on the amplitude
level and characterizing the transition regime between the two
critical densities. The pulse width distribution study is more

relevant in the Non-Linear regime, where the standard devi-
ation and maximum pulse width evolve smoothly. The mean
pulse width, however, remains relatively constant and does not
provide significant additional information.

From this study, several conclusions can be drawn. First,
the mean pulse amplitude provides valuable information for
characterizing the pulse amplitude distribution. Second, evalu-
ating the pulse standard deviation is somewhat redundant with
the amplitude study. Finally, analyzing the pulse width through
its standard deviation can yield useful insights, particularly in
the full Non-Linear regime (beyond the second critical density).
These conclusions were derived from a simple linear density
profile; similar trends were observed with the other two den-
sity profiles (ND, QD). The only notable difference was a shift
in the delay distribution due to the larger vacuum layer when
using a quadratic density profile.

C. Gaussian Fitting of the Pulse

One way to assess the deformation of the Gaussian pulse
is to track the relative error of the Gaussian fit. This method
allows us to study the true Gaussian standard deviation, mean,
and amplitude. The following figure shows the relative error of
the Gaussian fit and the Gaussian fit itself.

Figure 3.5 – On the left, the Gaussian fit of the mean pulse
is shown for several turbulence amplitudes. On the right, the
relative error of the Gaussian fit evolution is plotted, with
residuals weighted by the size of the respective pulse ampli-
tude, as a function of turbulence amplitude.

The residuals are getting large in the transition zone of
the pulse shape and seem to decline for very large turbulence.
However, we need to find smooth metrics to characterize the
transition, rather than relying on pseudo-random metrics, to
achieve better predictions in the next part. The Gaussian pa-
rameters are also promising candidates and are plotted in the
next figure.
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Figure 3.6 – Gaussian fit parameters evolution over the in-
creasing of turbulence amplitude

Gaussian pulse delay and standard deviation exhibit chaotic
behavior during the transition regime, making them less rele-
vant candidates for the next study. However, the Gaussian
pulse amplitude shows a relatively smooth behavior, though it
reveals a plateau during the nonlinear transition, which might
not be ideal. Despite this, at large amplitudes, it captures a
similar behavior as the non-Gaussian amplitude, which may be
worth studying further in the highly nonlinear regime.

II. DATASETS BUILDING

For the two-dimensional datasets, we select the following
pulse metrics in addition to the quantilized delay distribution:
mean pulse amplitude, standard deviation of delay, mean asym-
metry , skewness of the mean pulse, and standard deviation of
pulse width. We start by generating a 2D dataset based on a
spectral density field. The real field is then obtained using the
inverse Fourier transform of the δn(k) field. For each simula-
tion, we record the pulse signal with and without the turbulence
field, using approximately 500 samples. The raw data is pro-
cessed online on LEONARDO to extract the pulse metrics and
delay distribution. This data is saved in a SQL dataset built for
this purpose, with simpler Python integrated operations on the
data, and then transferred to the SPC computer for further
data operations. We follow the same procedure as for the 1D
dataset, including standard normalization and the same train-
ing/testing split, with the simulation parameters as input and
δn0, τ0 as output.

A. Gaussian spectrum of the turbulences

The Gaussian spectrum is the simplest way to model turbu-
lence and was used as a first approximation to assess whether
the model could integrate dependencies related to different cor-
relation lengths. The parameters used for the 2D simulations
with the CUWA code onLEONARDOO are as follows:
θ represents for the incident angle of the probing beam,

R the geometry curvature, lcx the typical correlation length of
the turbulence in the x direction, and lcy the typical correlation
length of the turbulence in the y direction. The R range is cho-
sen to tackle flat and near TCV tokamak geometries. θ values
are dependent on the R range and cannot be too high; indeed,
if we consider a high curvature, the incident angle cannot be
too high because the probing beam will not be able to reach
the cut-off layer, or will be reflected not in the direction of the
antenna. This is why we limited ourselves to 10 degrees, with
R = 0.2 m. In the Gaussian case, the power spectrum of the

turbulence is given by the following formula:

δn(k) = δn0 exp
(
− (kx lcx)

2 + (ky lcy )
2

8
+ iΦ(k)

)
This formula will be used to create the first part of the dataset
with defined correlation lengths. However, one could argue
that the power spectrum of TEM instabilities is not Gaussian.

B. Power Spectrum for the Turbulences

Indeed, the power spectrum of the turbulences provides
a more realistic approach to the turbulence profile, with han-
dling of the non separibility of kx ky . We can then introduce
the following formula for the wave vector spectrum [24], and
the different parameters used:

⟨δn2⟩ = 1

1 +
∣∣ kx
Wx

∣∣γ + ∣∣∣ ky−k∗yWy

∣∣∣β
With Wx the x spectral width, Wy the y spectral width, and
k∗y the injection driving scale of the instabilities. Note that all
the parameters are normalized by ρs , the ion gyro-radius. This
formula has the advantage of not being separable in x and y ,
which is the case in most of studies [25].

a) Correlation Length Dependency Study

As it is not determined by the power spectrum formula, we
have to shift to measured lc as an input for the model. This
is why it is convenient to have a relationship between all the
parameters and the correlation length. The expression of lcx,cy
can be found using the CCF on many field samples (s).

rxx(τ) =

∑
s

(
˜δns(x + τ, y)

) (
˜δns(x, y)

)∑
s

(
˜δns(x, y)

)2
With ˜δns(x, y) = δns(x, y) − ¯δns(y). The Wiener-Khinchin
theorem [CITE] provides another method to compute the cor-
relation length without the need for many samples. Indeed,
supposing ky is constant for the integration, we have for the x
correlation length:

rxx(τ) =

∫ ∞

−∞
< δn(kx , ky )

2 > e2πkx τ dkx

With rxx the autocorrelation function. The correlation length
is then defined when rxx reaches the e−1 level. Developing the
expression of the power spectrum, we have:

rxx(τ) =

∫ ∞

−∞

1

1 + | kx
Wx
|γ + | ky−k

∗
y

Wy
|β
e2πikx τ dkx (3.1)

=

∫ ∞

−∞

e2πikx τ

1 + | kx
WxC1/γ

|γ
dkx (3.2)

From this we can see that the autocorrelation function has a
spiked shape, whose width is linearly proportional to: 1

WxC1/γ

with C = 1+
∣∣∣ ky−k∗yWy

∣∣∣β. The same reasoning can be applied

to the y correlation length, with the same width dependency.
This leads to the following dependency:

lcx ∝
(

1

WxC1/γ

)
, lcy ∝

(
1

WyZ1/β

)
With Z = 1+

∣∣ kx
Wx

∣∣γ . For large-scale turbulences like TEM,
the spectral width is greater than the wave number since it’s
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known to be a large-scale phenomenon. This leads to C ≈ 1
and Z ≈ 1. We then have:

lcx ∝ 1

Wx
∝ ρs , lcy ∝ 1

Wy
∝ ρs

Then we numerically computed the correlation length us-
ing the true CCF and Wiener theorem to determine the pro-
portionality constant for both x and y cases. Thanks to this,
we can keep the correlation length as an input for the model,
rather than the spectral width, which is more difficult to mea-

sure. We try to derive the full expression of the autocorrelation
function rxx(τ) from complex integration of the function e2πixτ

1+xγ

over the contour γ defined as the R radius positive hemi-circle
in the complex plane, This leads to a complex relation of the
form

rxx(τ) ∝
∑
res

esin(θi )sin(θi)

We did not suceed inverting this expression to isolate τ even
with deep study of approximations near the poles.
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Figure 3.7 – On the left, the rxx values computed using both the CCF and Wiener Theorem are plotted for various ρs . On
the right, a linear fit is shown between the correlation length and the ion gyro-radius. A similar study was conducted for the y
correlation length dependency. Note that for generating the ⟩δn⟨2 field, the following parameters were used: D = 6.3×10−3( ρ

L
)2,

Wx =
3.71
ρs

, Wy = 4
ρs

, β = 2.88, γ = 3.14, and k∗y =
0.1
ρs

. The lcx and lcy calibration (see fig: 3.7) was performed using these
values as referenced in [24].

The correlation length fit of the Wiener theorem appears
to have the smallest residuals and leads to the same results
as the CCF method, without computing too many samples.
We can then obtain the following formula for the correlation
lengths, which should lead to the same turbulence structures
as the Gaussian spectrum (see Fig: 3.8):

{
lcx = (1.19± 0.02)ρs + (0.0012± 0.0001)
lcy = (1.35± 0.03)ρs + (0.0015± 0.0001)

We can then use these formulas to compute the correlation
length for the 2D datasets, which will be input parameters for
our model, and then use the power spectrum formula to com-
pute the δn(k) field.

Parameters range

δn0 L -[cm] ρs -[m] θ -[°] R -[m]

[1e−3, 1] [5, 18] [2e−3, 2e−2] [0-10] [0.2,5]

Table 3.2 – 2D simulation parameters range based on Power
spectrum, the value of ρs are choosen to be included in the
range of the gaussian dataset values of lcx amd lcy .

Gaussian field Power field

Figure 3.8 – Comparison of the turbulence fields for ρs =
8 × 10−3 using the corresponding correlation lengths in the
Gaussian spectrum. A linear-dependent turbulence profile
was chosen with δn0(x) = δn0 xL . The selected plotting area
is a (3 cm x 10 cm) rectangle that includes both the cut-off
layer and the vacuum layer in a slab geometry.

In Fig.3.8, we can clearly observe the same structure of the
turbulence field for both spectral approaches, indicating that
our initial Gaussian approximation is quite relevant. This rele-
vance not only validates our approach but also suggests that
it will significantly enhance our model’s ability to generalize its
predictions across various turbulence scenarios. Consequently,
we will retain this valuable and detailed data for training pur-
poses, ensuring a robust foundation for the model.
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C. Data Scanning

For the first part of the training, to ensure a homogeneous
data distribution, we chose data points on a defined grid. To
refine the model, we then used some random uniformly sam-
pled (logarithmically for δn0) data points within the range of
the study. To check if the reached distribution is quite homo-
geneous for the training, we can plot the distribution of the
data points in the parameter space and see if the data points
are well distributed. This is illustrated in the following figure.

     

R

     

L

     

lcx

     

lcy

     

teta

Figure 3.9 – Polar distribution of data points in the parameter
space for training. This distribution is evaluated for homo-
geneity across different parameters to ensure comprehensive
coverage of the parameter space. The circle represents the
parameter range as described in Table 3.2 and Table ??, while
the radial value indicates the parameter distribution value.
Data points from the power spectrum datasets are shown
in blue, and those from the Gaussian spectrum datasets are
shown in red.

The figure shows that the data points are quite well dis-
tributed in the parameter space. One observation is that the
R distribution is concentrated near 0 because we chose to plot
the curvature 1

R
rather than the true radius distribution. To ac-

count for flat geometries, we introduced an R = 1000 value in
the datasets, which could have disrupted the normalization pro-

cess. Additionally, the lcy distribution is unevenly distributed
since we also introduced high values of lcy to mimic the 1-
dimensional case. Before training, we followed the same pro-
cedure as for the 1D datasets, with standard normalization,
and used the same training/testing split, with simulation pa-
rameters as input along with the previous metrics and δn0, τ0
as output.

III. RESULTS

The model was trained on the 2D datasets, maintaining
the same structure as the 1D model (which was found to be
quite robust for handling nonlinearities). The same hyperpa-
rameters were used for this study (see Table 2.1). The only
difference is the number of input data variables, which compli-
cates our model.

A. Global Performance

The model achieved an R2 score of 0.92 for the Gaussian
testing set and 0.89 for the power spectrum testing set. These
are quite reasonable results, even considering the logarithmic
dependency of δn0. For comparison, a deep neural network
was trained in parallel with the same dataset. This network
had 5 layers with (256, 128, 64, 32, 2) neurons in each layer
with sigmoid activation. This more complex model achieved a
poor R2 score of 0.3, which is significantly below our model’s
performance. To gain a better overview, we can use the same
principle as in Figure ??, comparing the residuals of the model
for each parameter value in the testing set. This is illustrated in
the fig (3.9).Here we plot the mean residuals for each param-
eter value. The residuals for the Gaussian datasets are shown
in blue, while those for the power spectrum datasets are in red.
The model shows a notable improvement over the 1D model,
with a mean residual of 0.25. This is ten times smaller than
the residuals observed with the 1D model applied to the 2D-
shifted datasets. The residuals are generally well-distributed
across all simulation parameters. However, there are some ob-
servations to note: The residuals for the R parameter tend
to be concentrated at lower values, which results from the 1

R
transformation. Additionally, the residuals for the θ parameter
are higher at larger θ values. This makes sense, as handling
higher θ cases is more challenging. Despite these variations,
the residuals for both datasets are quite similar in their mean
values. This consistency suggests that the model generalizes
well across different types of turbulence spectra.

   
   

   
 

0.5

R
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L

   
   

   
 

0.5

lcx

   
   

   
 

0.5

lcy

   
   

   
 

0.5

teta

Figure 3.10 – Here we plot the mean residuals for every value of every parameter, in blue filled we got the residuals for the
gaussian datasets, and in red the residuals for the power spectrum datasets.
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B. Comparison of the Prediction with Other Models

For the previous study, the datasets contained several pa-
rameters implying a 2D geometry. However, to compare our
model with the 1D model and the analytical model, we need to
build a final comparison dataset. To ensure clear results, we
will fix the parameters lcy , R, θ, L, and lcx to the same values
for both the 1D and 2D models. This allows us to examine
if our model can handle the simpler 1D case. We will study
the dependency of predicted δn0 on true δn0, which provides a
general perspective on rms(τ) over δn0. Additionally, for the
1D analytical model, we have the equation < τ >= τ0.

a) Mean Delay Study

In the nonlinear regime, the previous assumption < τ >=
τ0 may be invalid. Our model should be able to address this
case. To investigate this effect, we will study the dependency
of τ0 on δn0. In the nonlinear regime, the probability of a
shift in the cut-off layer being positive or negative is not equal.
Specifically, there is a higher probability of a negative shift than
a positive shift. Consider a given nc and δx value. We will use
a 1D model with a density variation probability density function
(PDF) that does not account for spatial correlation length:

p(δn, x) =
1√
2πσ2

e
− δn2
2σ2

where σ ∝ δn0. We are interested in the first-hitting posi-
tion, which is a sub-branch of survival stochastic analysis. The
probability of survival S(x) (i.e., the probability that the density
does not reach the δnc value before x) is given by the critical
density variation δnc = nc L−xσ . The goal is to show that the
probability of the first hitting position decreases with x .

To include the correlation length of the instabilities field,
we must account for it in the survival probability calculation. If
not, the survival probability will be simply zero. For simplicity,
we will discretize the interval of study [0, x ] with

⌊
x
lcx

⌋
points.

This approximation assumes that every point in each interval
of length lcx has the same probability of survival, equivalent to
a step approximation. The probability of having a value smaller
than δnc at a specific point i is given by the following formula:

P (δnc , ia) =

∫ δnc

−∞
p(δn, ia) dδn

=
1

2

(
1 + erf

(
δnc(ia)

σ

))

The survival probability at point x = ia is then given by the
following formula :

S(ia) =

i∏
j=0

P (δnc , j ∗ a)

The probability that the first hitting position is at x = i lcx is
then given by

F (i lcx) = S(i lcx)P (i lcx).

The goal of this study is to show that F (x) has a maximum
located before the original cut-off position. To demonstrate
this, we computed numerically the value of S(i lcx). From this
computation, we find an interesting approximation of the sur-
vival function. For a Gaussian (shifted) process, the numerical
results show that the survival function can be approximated by:

S(x) ≈ 1
2

[
1 + erf

(
x − µ
σ
√
2

)]
,

where erf is the error function, µ is the mean of the dis-
tribution, and σ is the standard deviation.

S(x) ≈ 1
2
+
1

2
erf

(
L− x − a(lcx, L, σ)
b(lcx, L, σ)

)
(3.3)

With a(lcx , L, σ) the characteristic shift and b(lcx , L, σ) a char-
acteristic width, this approximation is the probability to remain
below the critical value at a position x−a(lcx , L, σ) with a modi-
fied distribution of instability amplitudesN (0, b(lcx , L, σ)). We
can note that this result is very close to the survival function
of a Brownian process. Considering an absorption point xc , the
first hitting time method used in this kind of problem was not
applied here due to the linear shift of the Gaussian distribution,
which was very difficult to handle because we need to consider
a moving absorption point to make the parallelism.

6 7 8 9 10

x
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F
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)
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0.05 0.08 0.10 0.12 0.15

σ

Figure 3.11 – Here we plot the numerical calculation of F (x)
the First timeHitting probability (FHP) for numerous σ in
plain line and the approximated formula (3.3) in dotted line.
. For this simulation we used L = 10cm and lcx = 0.1cm,
and for the approximated formula we used a = 2.1σ1.5L and
b = .36σ0.8L, we did not study the dependancy over lcx but
this one is clearly in the power and the coefficient of a and b.

One can remark that the FHP is shifted to values before
L as σ increases, which explains the radial external shift of the
cut-off with the increasing amplitude of turbulences. Indeed,
we can assume a linear dependency between σ and δn0. This
shift will result in a difference between ⟨τ⟩ and τ0, with τ0 re-
maining constant and ⟨τ⟩ decreasing. We already know that
the linear model is not able to capture this precision—what
about the new models?
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Figure 3.12 – Here we plots the linear and the 1d, 2d model
prediction for τ0 over the δntrue the analytic model prediction
corresonds to the ⟨τ⟩ value. The plot bellow is the evolution
of the residuals between the predicted τ0 and the real one
over the amplitudes of the turbulences. On the left plot the
cumulative function of the residuals. This verification has
been done on 2 dimensional dataset with a curvature 1

R
= 4,

this allows us to see the difference of efficiency between the
1D and 2D model

Here we can see that the 1D model and the 2D model,
built on the same architecture, have very different prediction
and only the final 2 dimensional model is able to predict a con-
stant τ0 independently of the changing delay distribution. This
was intended since the models are trained on a constant τ0 that
depends only on L, R, and θ. The residuals evolution highlights
that for high amplitude the linear and the 1D model do not have
good predictions, this means that for a given turbulences field,
the model is not able to extract the previous background den-
sity profile from it. For the 2D model the residuals presents no
assymetric spread or too high value. It is centered over 0 with
a small over-prediction of the τ0 meaning that our model tends
to locate the cut-off layer a bit too far from the antenna. For
the linear and 1D model, the residuals are still quite centered
over 0 but with a huge spread of the residuals, and both model
in non linear regime tends to locate the cut-off layer too close
to the antenna. This considerations allow us to assert that
the 2d model is way better for handling this kind of geometries
than the others. We highlight the geometry dependancy be-
cause if a flat geometry with no incence angle we observed as
depicted in fig 2.3 a really good τ0 prediction for the 1d Model.

b) Amplitude prediction study

The first thing we did was comparing the efficiency of all
the models we built with the (δn0, δnpred

0 ) comparison. This in-
volves evaluating the results of the residuals, which show that
our latest model performs much better than the others. The
more the points deviate from the identity line, the worse the
model’s performance.

Here some interesting observations can be made. The lin-
ear model is not able to predict the amplitude of the turbulence
for high turbulence amplitudes, which is not surprising given the
complexity of the problem. Regarding the 1D model, the ac-
curacy collapses even with the shift of the delay distribution
(described in section ). We can also note that, even in the
linear regime, its performance is quite poor. The 2D model,
however, is able to predict the amplitude of the turbulence with
a high degree of accuracy. Especially in the non-linear regime,

however we can note for a amplitude δn0 of the order of n0
there is a slight decrease of the accuracy of the model, leading
to a saturated prediction, which hopefully occurs way after the
other models, in a range of amplitude not so relevant for our
study

The study of the residuals leads to the same conclusions
as before: the 2D model residuals are well-distributed centered
over 0 and have a low value, while the 1D model residuals and
the analytical model have wider range of possible, with a distri-
bution function (DF) broader than the 2d one, whose shape is
clearly not symetric characteristic of a wrong regression model.
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Figure 3.13 – Plot of the linear and the 1d, 2d model predic-
tion for δn0 over δntrue

0 . The simulation set-up is the same
as the fig 3.12. In filled blue the 95 % prediction interval of
the 2d model. The prediction interval is calculated with the
following formula :

PI = tα/2Se

√
1 +
1

n
+
(x − x̄)2
σx

With Se =
√

MSE2
n−2 the standard error of the prediction, MSE

the Mean Squared Error, tα/2 the t-student value for the 95
% confidence interval, and σx the standard deviation of the
x values.

c) Standard deviation of delay

As explained with 1.6, the RMS of the delay distribution
should decrease at high amplitude from δnc1 . This decrease is
not well addressed by the linear model (the next order of the
step model development needs to be studied), or at least not
correctly (see the third-order development of the linear model).
The previous model should present better results considering
the residuals of the predictions.

As we saw in the fig 1.6, the linear model is not able to
predict the saturation of the delay distribution, and predict a
linear dependancy of στd over the turbulences amplitudes. As
highlighted in the next figure 3.14the 1D and 2D model are able
to predict the saturation of the delay distribution, with a wider
range of amplitudes for the last one. However one can note
that in linear regime both models struggle to tackle the linear
dependancy over the amplitude of the turbulences. A good
solution might be to adapt the model after a first prediction of
the amplitude by the 2d model, if the predicted amplitude is in
the linear regime range, then you should switch to use linear
model for a better prediction.
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Figure 3.14 – Plot of στd over the linear and the 1d, 2d model
prediction for δn0. The simulation set-up is the same as the
fig 3.12. This plot was made to make the parallel with the
fig 1.6, to see if the model is able to predict the character-
istic saturation of the στd over the δn0. The residuals are
calculated relatively to the error on the predicted amplitude.
In filled blue the 95 % prediction interval of the 2D model

C. Results on experimental datasets

A demonstration of our final model was done on one exper-
imental dataset acquired from the TCV diagnostics. To obtain
coherent results, we had to shift the experimental dataset’s
distribution of delay to match the training dataset distribu-
tion. This constant shift is due to the geometry of the probing
method, which involves a different void layer. This process will
be necessary for future studies in different geometries. An-
othere solution is to have a consistent dataset with the same
range of data as our training datasets (see table 3.6), or to
train the model 2.2 on another dataset specific to the geom-
etry and diagnostic method used (see the source code of the
model).

CONCLUSION AND DISCUSSION
In this report, we first detailed the origin of one predomi-

nant mode of transport in the TCV, the TEM mode, and how
it can induce uncontrolled radial transport through resonant
interaction with trapped electrons, causing trouble for plasma
confinement. We then used a 1D model (proposed by Krutkin)
to gain initial insights into the turbulence regime and to assess
the relevance of the linear model.

We then moved on to the analysis of a 1-dimensional
dataset with a study of delay characteristics, checking if the
nonlinear regime could be handled by the proposed model struc-
ture. For the 1-dimensional dataset, the results were encour-
aging, but when applied to a 2-dimensional dataset, the model
lacked sufficient information to properly account for curvature,
incidence angle, and multiple scattering effects.

A more general 2D model was proposed, providing better
handling of nonlinear effects emerging from this additional di-
mension. The data used came from large CUWA code sim-
ulations and included more metrics than the 1-dimensional
dataset, carefully chosen to provide the best overview of the
phenomena at stake. The datasets for training were built
around the instability spectrum considerations, involving stud-
ies of both the power and Gaussian spectra of TEM. The resid-
uals of the predictions were studied and characterized for every

simulation parameter, leading to homogeneous results regard-
less of the parameter values. Finally, the model predictions
were tested on several physical aspects of the problem, includ-
ing the shifted cut-off handling and the decrease in the rms of
the delay distribution.

These results are significantly better than those previously
achieved for turbulence characterization at this level of tur-
bulence amplitude. It is important to note that our model is
built on the assumption that we have sufficient insight into
the turbulence characteristics, such as the correlation lengths,
which can be determined through other diagnostic methods
(Doppler Reflectometry Method and Thomson Scattering). If
future users of this model lack this insight, they can construct
a reduced model by dropping any metrics they do not have.
It should be highlighted that the delay distribution and pulse
characteristics (at least the standard deviation and quantiles
for the delay distribution) are necessary for obtaining meaning-
ful results with this model.

One might question why we did not use the computational
capacity of LEONARDO to build a larger neural network or
fine-tune an existing regression neural network. The simple
answer is the project’s budget and the inference time required.
We needed a fast and straightforward model with low inference
time on a simple GPU to potentially implement real-time data
analysis for plasma control.

Acknowledgments

The author wishes to thank Dr. Oleg Krutkin for his super-
vision, the instructive discussions for building the final model,
and for the careful reading of the manuscript. Many thanks to
CINECA clusters and their support during the course of this
work, one of the top five world supercomputers.

This project was carried out within the framework of a
master internship under the supervision of the Ecole Normale
Supérieure through Pr. Jean-François Allemand, who showed
great interest in this project. This project was supported by
The EUROfusion Consortium and received funding from the
FUSEnet organization, the EPFL exchange program, and the
Swiss Plasma Center.

Finally, I need to thank the SPC community for their kind-
ness in listening to my issues and considerations and for the
positive atmosphere that prevails in the center.

Bibliography

1T. J. Dolan, “Plasma heating and current drive”, in
Magnetic fusion technology , edited by T. J. Dolan
(Springer London, London, 2013), pp. 175–232.

2A. Piel, Plasma physics: an introduction to labora-
tory, space, and fusion plasmas, Graduate Texts in
Physics (Springer International Publishing, 2018).

3L. Qi, “Energy transfer of trapped electron turbu-
lence in tokamak fusion plasmas”, Scientific reports
12, 5042 (2022).

4Y. Xiao and Z. Lin, “Turbulent transport of
trapped-electron modes in collisionless plasmas”,
Phys. Rev. Lett. 103, 085004 (2009).

17 Andrea Combette

https://github.com/Chatr0uge/Internship_SPC
https://doi.org/10.1007/978-1-4471-5556-0_5
https://doi.org/10.1038/s41598-022-08932-4
https://doi.org/10.1038/s41598-022-08932-4
https://doi.org/10.1103/PhysRevLett.103.085004


BIBLIOGRAPHY REPORT ENS | SPC | EPFL

5T. Xie, Y. Z. Zhang, S. M. Mahajan, F. Wu, H. He,
and Z. Y. Liu, “The two-dimensional kinetic bal-
looning theory for trapped electron mode in toka-
mak”, Physics of Plasmas 26, 022503 (2019).

6W. Horton, “Drift waves and transport”, Rev. Mod.
Phys. 71, 735–778 (1999).

7O. Krutkin, “Theoretical analysis and full-wave sim-
ulations combined in the development of the syn-
thetic doppler reflectometry diagnostics for toka-
maks”, PhD thesis (June 2020).

8M. A. Mitsuru Kikuchi, Frontiers in fusion research
ii, introduction to modern tokamak physics, edited
by Springer (Springer, Naka, Ibaraki, Japan, Seta-
gaya, Tokyo, Japan, 2015).

9K. Miyamoto, Plasma physics and controlled nu-
clear fusion (Jan. 2004).

10V. Rozhansky, Plasma theory an advanced guide
for graduate students (Springer, St. Petersburg,
Russia, 2023).

11S. C. Prager, A. K. Sen, and T. C. Marshall, “Dissi-
pative trapped-electron instability in cylindrical ge-
ometry”, Phys. Rev. Lett. 33, 692–695 (1974).

12A. Hasegawa and M. Wakatani, “Self-organization
of electrostatic turbulence in a cylindrical plasma”,
Phys. Rev. Lett. 59, 1581–1584 (1987).

13M. Wakatani and A. Hasegawa, “A collisional drift
wave description of plasma edge turbulence”, The
Physics of Fluids 27, 611–618 (1984).

14B. Kadomtsev and O. Pogutse, “Trapped particles
in toroidal magnetic systems”, Nuclear Fusion 11,
67 (1971).

15A. Hasegawa and K. Mima, “Pseudo-three-
dimensional turbulence in magnetized nonuniform
plasma”, The Physics of Fluids 21, 87–92 (1978).

16P. H. Diamond, Theory of magnetically confined
plasma, https://courses.physics.ucsd.edu/
2021 / Spring / physics218c / handouts . html,
2021.

17Z. Lin, Y. Xiao, W. Deng, I. Holod, C. Kamath, S.
Klasky, Z. Wang, and H. Zhang, “Size scaling and
nondiffusive features of electron heat transport in
multi-scale turbulence”,

18G. Falchetto, J. Vaclavik, M. Maccio, S. Brun-
ner, and L. Villard, “Applicability of the ballooning
transform to trapped ion modes”, Physics of Plas-
mas 7, 1196 (2000).

19P. Aleynikov and N. B. Marushchenko, “3d full-
wave computation of rf modes in magnetised plas-
mas”, Computer Physics Communications 241,
40–47 (2019).

20K. Yee, “Numerical solution of initial boundary
value problems involving maxwell’s equations in
isotropic media”, IEEE Transactions on Antennas
and Propagation 14, 302–307 (1966).

21O. Krutkin, S. Brunner, and S. Coda, “A method
for density fluctuation measurements using pulse
reflectometry”, Nuclear Fusion 63, 10 . 1088 /
1741-4326/acd5e0 (2023).

22S. Heuraux, F. da Silva, E. Gusakov, A. Y. Popov,
N. Kosolapova, and K. V. Syisoeva, “Reflectome-
try simulation as a tool to explore new schemes
of characterizing the fusion plasma turbulence”,
Journal of Physics: Conference Series 416, 012019
(2013).

23O. Krutkin, S. Brunner, S. Coda, and P. Aleynikov,
“Linear scattering theory of short-pulse reflectom-
etry”, Plasma Physics and Controlled Fusion 65,
015013 (2022).

24J. R. Ruiz, F. I. Parra, V. H. Hall-Chen, N. Chris-
ten, M. Barnes, J. Candy, J. Garcia, C. Giroud, W.
Guttenfelder, J. C. Hillesheim, C. Holland, N. T.
Howard, Y. Ren, A. E. White, and J. contributors,
“Interpreting radial correlation doppler reflectome-
try using gyrokinetic simulations”, Plasma Physics
and Controlled Fusion 64, 055019 (2022).

25L. Vermare, P. Hennequin, Ö. D. Gürcan, C. Bour-
delle, F. Clairet, X. Garbet, R. Sabot, and the Tore
Supra Team, “Impact of collisionality on fluctua-
tion characteristics of micro-turbulence”, Physics
of Plasmas 18, 012306 (2011).

26H. Biglari, P. H. Diamond, and P. W. Terry, “In-
fluence of sheared poloidal rotation on edge turbu-
lence”, Physics of Fluids B: Plasma Physics 2, 1–4
(1990).

27J. W. Connor, R. J. Hastie, and J. B. Taylor,
“Shear, periodicity, and plasma ballooning modes”,
Phys. Rev. Lett. 40, 396–399 (1978).

28P. Molina Cabrera, S. Coda, L. Porte, A. Smolders,
and T. Team, “V-band nanosecond-scale pulse re-
flectometer diagnostic in the tcv tokamak”, Review
of Scientific Instruments 90, 123501 (2019).

18 Andrea Combette

https://github.com/Chatr0uge/Internship_SPC
https://doi.org/10.1063/1.5048538
https://doi.org/10.1103/RevModPhys.71.735
https://doi.org/10.1103/RevModPhys.71.735
https://doi.org/10.1103/PhysRevLett.33.692
https://doi.org/10.1103/PhysRevLett.59.1581
https://doi.org/10.1063/1.864660
https://doi.org/10.1063/1.864660
https://doi.org/10.1088/0029-5515/11/1/010
https://doi.org/10.1088/0029-5515/11/1/010
https://doi.org/10.1063/1.862083
https://courses.physics.ucsd.edu/2021/Spring/physics218c/handouts.html
https://courses.physics.ucsd.edu/2021/Spring/physics218c/handouts.html
https://doi.org/10.1063/1.873930
https://doi.org/10.1063/1.873930
https://doi.org/https://doi.org/10.1016/j.cpc.2019.03.017
https://doi.org/https://doi.org/10.1016/j.cpc.2019.03.017
https://doi.org/10.1109/TAP.1966.1138693
https://doi.org/10.1109/TAP.1966.1138693
https://doi.org/10.1088/1741-4326/acd5e0
https://doi.org/10.1088/1741-4326/acd5e0
https://doi.org/10.1088/1741-4326/acd5e0
https://doi.org/10.1088/1741-4326/acd5e0
https://doi.org/10.1088/1742-6596/416/1/012019
https://doi.org/10.1088/1742-6596/416/1/012019
https://doi.org/10.1088/1361-6587/aca826
https://doi.org/10.1088/1361-6587/aca826
https://doi.org/10.1088/1361-6587/ac5916
https://doi.org/10.1088/1361-6587/ac5916
https://doi.org/10.1063/1.3536648
https://doi.org/10.1063/1.3536648
https://doi.org/10.1063/1.859529
https://doi.org/10.1063/1.859529
https://doi.org/10.1103/PhysRevLett.40.396
https://doi.org/10.1063/1.5094850
https://doi.org/10.1063/1.5094850

	THEORETICAL BACKGROUND
	NUCLEAR FUSION
	Fusion Reaction
	Tokamak confinement

	TRANSPORTS IN TOKAMAK
	Trapped Particles and Drifts
	Trapped Particles
	Drift waves

	Radial Transport

	WAVE PROPAGATION IN PLASMA
	Plasma as a Medium
	Wave Equation

	CUWA CODE OVERVIEW
	LINEAR REGIME STUDY
	Perturbed Density Profile
	Step-like Perturbation



	1-DIMENSIONAL MODEL
	RELIABLE METRICS
	MACHINE LEARNING MODEL
	Structure

	INPUT DATA
	DATASETS BUILDING
	RESULTS

	2-DIMENSIONAL MODEL
	PULSE SHAPE STUDY
	Relative Study of Pulse Shape
	Statistical Study of Pulse Shape
	Gaussian Fitting of the Pulse

	DATASETS BUILDING
	Gaussian spectrum of the turbulences
	Power Spectrum for the Turbulences
	Correlation Length Dependency Study

	Data Scanning

	RESULTS
	Global Performance
	Comparison of the Prediction with Other Models
	Mean Delay Study
	Amplitude prediction study
	Standard deviation of delay

	Results on experimental datasets


	CONCLUSION AND DISCUSSION

