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Introduction
In the 19th century, classical me-

chanics, rooted in Newton’s laws, dom-
inated physics. Pierre-Simon Laplace
famously articulated the deterministic

worldview: given the initial conditions
of a system, its future could be per-
fectly predicted through precise math-
ematical equations. This perspective
treated the universe like a clockwork ma-
chine, where every event followed from
the initial state.

However, as the study of thermo-
dynamics and many-particle systems ad-
vanced, the limits of this purely deter-
ministic approach became clear. Statis-
tical physics emerged to address these
complexities, particularly through the
work of James Clerk Maxwell and Ludwig
Boltzmann. Their pioneering contribu-
tions, such as Maxwell’s velocity distri-
bution in gases and Boltzmann’s statisti-
cal interpretation of entropy, introduced
probabilistic methods to understand the
behavior of large ensembles of particles.

In this new framework, the precise
motion of individual particles became
less important; instead, statistical aver-
ages and distributions described macro-
scopic properties like temperature and
pressure. While Laplace envisioned a
universe governed by strict determin-
ism, statistical physics embraced the un-
predictability inherent in large systems,
marking a profound shift in understand-
ing.

This shift continued to resonate into
the 20th century, influencing the work of
physicists like Philip W. Anderson. An-
derson famously argued that "more is
different," suggesting that the behavior
of complex systems cannot be fully un-
derstood by analyzing individual compo-
nents alone. This echoes the insights of
19th-century statistical physics, where
collective behavior emerged from many
interacting parts, challenging the reduc-
tionist views of classical mechanics.

In summary, while classical mechan-
ics remained essential for describing de-
terministic systems, the development of
statistical physics in the 19th century in-
troduced a probabilistic approach that
transformed our understanding of many-
body systems and laid the groundwork
for modern physics.

I. Computational Statistical Physics

Computational methods allow us to
simulate these complex systems directly,
providing detailed insights into their be-
havior. Using modern computing power,
scientists can model the interactions of
millions, or even billions, of particles,
making it possible to observe emergent

phenomena such as phase transitions,
critical behavior, and chaotic dynam-
ics. This computational approach helps
us overcome the "many-body" problem,
where the sheer number of interactions
in a system defies exact solutions.

One reason computational statisti-
cal physics is so powerful is that it
can handle systems that are analyti-
cally intractable. For instance, systems
with strong correlations between parti-
cles or those far from equilibrium, which
are difficult to study using traditional
methods, can be simulated using Monte
Carlo techniques, molecular dynamics,
and other algorithms.

Additionally, computational ap-
proaches enable the study of phenom-
ena at different scales—from the atomic
scale, where quantum effects dominate,
to macroscopic scales governed by clas-
sical statistical physics. This versatility
allows for a deeper understanding of
both microscopic mechanisms and their
macroscopic consequences, bridging the
gap between theoretical models and
real-world systems.

In essence, computational statisti-
cal physics allows us to explore systems
that are too complex for exact solu-
tions, providing a practical and powerful
way to study emergent behavior, phase
transitions, and non-equilibrium systems.
By leveraging the power of computers
(which is increasing exponentially since
the second half of the 19th century 1.1),
it opens up new frontiers for understand-
ing the vast complexity of the physical
world, which neither classical mechanics
nor early analytical statistical methods
could fully address.
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II. Invariant Measures and Ergodicity

In statistical physics, the concept of
an invariant measure plays a crucial role
in understanding the long-term behavior
of dynamical systems, and the symetry
of the system (Noether’s theorem). One
of the main goals of computational sta-
tistical physics is to find algorithms pre-
serving the invariant measure of the sys-
tems we are studying. For example we
will see that the Euler algorithm is not
a good choice for simulating Hamilto-
nian systems, as it does not conserve
the energy of the system, as opposed to
the Verlet algorithm, which is based on
clever considerations of the symplectic1.
Ergodicity is another important concept
in statistical physics, which ensures that
the system explores the entire phase
space in the long run. Which results in
one of the most important hypothesis in
computational statistical physics, the er-
godic hypothesis, which states that the
time average of a system is equal to its
ensemble average.

Molecular Dynamics
I. Hamiltonian Dynamics

A. Hamiltonian Formalism

The Legendre transformation of the
Lagrangian allows us to define the
Hamiltonian of a system, which is a func-
tion of the generalized coordinates qi and
the generalized momenta pi of the sys-
tem (see CITE). The Hamiltonian is de-
fined as :

H
def
=

pTM−1p
2

+ U(q)

with U(q) the potential energy of the
system and M the mass matrix of the
system. The equations of motions can
then be written using the Euler-Lagrange
equations : {

q̇ = ∂H
∂p

ṗ = − ∂H
∂q

This can be written in a more com-
pact matrix form :(

q̇
ṗ

)
= J∇H(p, q)

with

J =
(
0 I
I 0

)
These type of non linear equations can
only be ensured locally, but since the sys-
tems are Hamiltonian we can unearth the

global existence and uniqueness of the
solutions. Indeed we just need to show
that using the energy constraints of the
system the solutions are bounded for all
time. For the impulsion this is trivial con-
sidering a potential global minimum :

pTM−1p
2

≤ E0 − Umin

For the position we just need an as-
sumption on the level sets of the poten-
tial energy.

Σα = q|U(q = α)

If these levels are bounded then the so-
lutions are bounded for all time. This
is not the case for all potentials, this is
why for solving this kind of equations we
will add sometimes confining potentials
to the system.

B. Map Flow

Since the Hamiltonian equations are
solvable, it seems natural to define a map
flow F such that for an initial condition
z0 and a considered point zt we have :

zt = Ft(z0)

This flow map is obviously invertible and
Hamiltonian conservative. The key of
numerical integration is then to approx-
imate the true flow map of the system
by the numerical flow map T such that
the physical properties of the system are
conserved over time.

Considering the linear system for the
differentiation :

dz
dt
= f (z) = Az (2.1)

One way to solve this equation is to
use the matrix exponential :

zt = exp(At)z0

Then it appears that the flow map is
given by :

Ft(z) = exp(tA)z (2.2)

C. Sympletic Form

a) Volume Preservation

One of the most important proper-
ties of the flow map is the preservation
of the volume in the phase space. In-
deed,for a Hamiltonian system we have
thanks to Liouville’s theorem the volume
of a given sets of solution governed by
2.1 is preserved over time if

∇ · f = 0 .

It is easy to show that for a Hamil-
tonian system :

∇ · f = ∇ ·
(
0 I
I 0

)
∇H = 0

Due to the C2 property of the Hamil-
tonian. The main consequence of this
property is that the flow map is volume
preserving (Liouville Theorem), which
has to be an important concern while
building an integration algorithm to ap-
proximate the flow map.

Φ space

V2

V1

z(t)

V1(0) = V2(0)

Figure 2.1 – Volume conservation for the
true Hamiltonian in black and the approx-
imated Hamiltonian in red

b) Sympletic Property

The sympletic property of the flow
map is another important characteristic
of the Hamiltonian system. Indeed, the
sympletic property of the flow map is de-
fined as :

FTt JFt = J (2.3)

With J =

(
0 I
−I 0

)
the sympletic ma-

trix. This property leads to the conser-
vation of the volume of the phase space,
indeed one can easily show using (2.3)
that we have for the Jacobian associated
with the map : |F ′t |2 = 1.

One interesting point of symplectic
maps is that they form a group (they
preserved the composition) which can be
used to build other more complex sym-
plectic maps. For example to increase
the order of sympletic integrators Gh ap-
proximating the flow map Fh, we can
compose this latter with an other inter-
esting sympletic integrator, this final in-
tegrator will then be sympletic and vol-
ume conservative. We can also split the
integrator in two sympletic part if they
are independant which is the case for
Hamiltonian flow map in a pure potential
V (q). This is called the splitting method
[1], and will be the object of the next dis-
cussion.

1Symplectic geometry has its origins in the Hamiltonian formulation of classical mechanics where the phase space of certain classical
systems takes on the structure of a symplectic manifold
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D. Error Analysis for Hamiltonian
splitting

a) Lie Derivatives and Poisson Brack-
ets

Lie Derivatives

In the case of a non-Linear Hamil-
tonian system, the flow map can be ap-
proximated by the Lie derivative of the
Hamiltonian, we would like to find again
the convenient results :

Ft = exp(tA)z

Let’s consider a functional Φ of the
phase space, the Lie derivative of Φ is
defined as :

LfΦ = ∇Φ · f

This is a generalization of the direc-
tional derivative to the phase space. Ex-
panding the Φ map in a Taylor series we
have :

Φ(z(t)) =
∑
i

t i

i!
(LifΦ)(Φ(0))

= exp(tLf )(Φ(0))

Applying this along the trajectory
gives us the following map :

Ft(z) = exp(tLf )(z)

Poisson Brackets

A common notation introduced in
Hamiltonian mechanics is the Poisson
bracket, which is defined as :

{g1, g2} =
N∑
i=1

(
∂g1
∂qi

∂g2
∂pi
− ∂g2
∂qi

∂g1
∂pi
)

= ∇gT1 J∇g2

Considering a smoooth scalar value
function F of the phase space, we can
show that the Lie derivative of F is given
by the Poisson bracket of F and the
Hamiltonian :

LJ∇HF = LHF = {F,H} (2.4)

Poisson brackets can be related to
the Lie derivating noticing that for every
real valued function f :

[LH1 ,LH2 ]f = L{H1,H2}f

b) Error Analysis for non Commuting
Hamiltonian

The main idea behinds this study is
to consider integration method as a split-
ting of the Hamiltonian into several parts
oftenly independant of one of the two
system of coordinates (q, p), as we will
see further. The poisson brackets are
linear with respect to the Hamiltonian
(2.4), which allows us to write the fol-
lowing considering H = H1 +H2,

LH = LH1 + LH2

The flow map of the system is then
defined as : Ft(z) = et()LH1+LH2 )z

The splitting method has the follow-
ing flow map :

Gth = ehLH1 ehLH2

Which is not the same as the true flow
map. To evaluate the error done con-
sidering the splitted Hamiltonian, we
can use the Baker-Campbell-Hausdorff
formula and the correspondance be-
tween the Lie derivative and the Poisson
bracket unearthing :

ehLH1 ehLH2 = e
hL
H̃h

With H̃h the so called shadow Hamil-
tonian [1] :

H̃h = H1 +H2 +
h

2
{H1, H2}

+
h2

12
({H1{H1, H2}} − {H2{H1, H2}})

+ . . .

(2.5)

From this we can easily understand
that as long as the two split Hamilto-
nian do not commute, we have at least
a linear error (one example is the sym-
pletic Euler Method). One way to do
that, is to find a split with commutat-
ing Hamiltonian, or to split H into three
Hamiltonian such that that the linear
term vanishes when we develop the ex-
pansion (such as the Velvet Velovity &
position method). The main idea behind
this development was to show that the
flow map Ft we approximate using the
other Gt stands in the splitting method
for an exact solution to an other (but
similar) Hamiltonian system.

To put in a nutshell the splitting
method allows us to build sympletic
integrator using Hamiltonian transfor-
mations. Not all interesting integra-
tors have sympletic structures, but they
should all have volume conservation
properties at least on long time scales.

II. Time Integration

Here we will restrict our study to sim-
ple linear system. To perform time in-
tegration, we discretize time into small
intervals δt . At each time step tn+1 =
nδt, we approximate the change in the
system using matrix iteration.(

x(nδt)
y(nδt)

)
= T n(δt)

(
x(0)
y(0)

)
The goal is then to find the correct

matrix such that iterating over time will
not change the invariance of the system.
To fit the previous notations the flow
map can be defined as :

Fδt(z) = T (δt)z
with Fδt a volume conservatuve flow
map.

A. Application to the Harmonic
Oscillator

The Harmonic oscillator is a simple
system with a known solution, despite its
simplicity it unearthed so key concerns
for time integration algorithms (stability
of the integrator, pseudo-conservation
of the energy, etc.).

ẍ − ω2x = 0

a) Exact Propagator

The exact time evolution of the sys-
tem for a time translation of δt is given
by the following propagator :(

x(δt)
ẋ(δt)

)
= T (δt)

(
x(0)
ẋ(0)

)
With

T (δt) =
(
cos(wt) 1

w
sin(wt)

w sin(wt) cos(wt)

)
In the next analysis we will use a di-

mensionless time τ = ωt, a dimension-

less position ξ =
√

k
kBT
x and a dimen-

sionless impulsion Π =
√

1
mkbT
p , which

leads to the following time Propagator :

Fδτ = T (δτ) =
(
cos(δτ) sin(δτ)
− sin(δτ) cos(δτ)

)
= exp(Jδτ)

Here we related as did previously the
flow map to the derivative operation for
our system. For the Hamiltonian we re-
cover :

H =
H
kBT

=
1

2
(Π2 + ξ2)
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Then let’s consider a microstate of the

system |τ⟩ =
(
ξ(τ)
Π(τ)

)
The time evolu-

tion of the system is given by the follow-
ing equation :

|τ + δτ⟩ = T (δτ) |τ⟩

With the unitary propagation matrix

T (δτ) =
(
cos(δτ) 1

ω
sin(δτ)

−ω sin(δτ) cos(δτ)

)
Solving the characteristic equation ∥T −
λI| = 0, we unearth the eigenvalues.

λ± = exp(±iδτ),

Considering the two orthogonal
eigenvectors |±⟩, we easily show that :

|nδt⟩ = T (δt)n |0⟩
= a+λ

n
+ |+⟩+ a−λn− |−⟩

Considering the initial decomposition

|0⟩ = a+ |+⟩+ a− |−⟩

Then we can easily show that :

E

kbT
=
1

2
⟨nδτ |nδτ⟩

=
1

2

(
|a+|2 + |a−|2

)
T (δt)n

=
1

2
⟨0|0⟩

Which shows that the energy is con-
served over time. We can also show
an interesting result about the conserved
quantities : Every conserved property of
the system is proportional to the Hamil-
tonian.

⟨0|A|0⟩ = ⟨τ |A|τ⟩
⇒ A ≡ T †AT
⇒ A ∝ H

b) Euler Algorithm & Propagator

The Euler algorithm is the simplest
algorithm to perform time integration,
based on the first order approximation in
Taylor expansion. The explicit non sym-
pletic Euler algorithm is given by the fol-
lowing flow map :

Geuler
δτ = I − Sδτ

With S verifying

dz
dτ
= Sz

One can remark that for volume conser-
vation the map should verify the follow-
ing property :

det(I − Sδτ) = 0 (2.6)

Which is generally not the case in
physical system were the eigen values of
S are in many cases, pure imaginary. If
we write the propagation matrix for the
Euler algorithm, we obtain the following
:

T (δτ) =
(

1 δτ
−ω2δτ 1

)
Which is not unitary, and not time

reversible. We can show that the en-
ergy of the system is not conserved over
time, through the same reasoning as be-
fore. Indeed, the two eigenvalues of the
matrix are :

λ± = 1± iδτ
Which leads to divergence of the en-

ergy with the following expression :

H =
1

2
⟨0|0⟩ (1 + δτ2)n

=
1

2
⟨0|0⟩ exp

(
n ln

(
1 + δτ2

))
This divergence of the system can

be seen in fig 2.3. This lack of stability
is closely related to the relation (2.6),
but stability analysis is a more complex
subject, which will not be discussed here
(see [1] for more information).

c) Verlet Algorithm & Propagator

The Verlet algorithm is a second-
order algorithm, which is based on the
symplectic structure of the phase space
and directly derived from the splitting
method. The point is to split the Hamil-
tonian into two parts, one depending
only on the position and the other only
on the impulsion.

H = Hq +Hp

With Hq = U(q) and H(p) = pTM−1p
2

.
If we just do that it is obviously from
the shadow Expansion of the Hamilto-
nian (2.5) an order one method (the Eu-
ler sympletic method). For the velvet
algorithm we want that the order one
term vanishes, which leads to the follow-
ing splits:

H = H1 +H2 +H3

With the following possibility :

{
H1 = H3 =

1
4
pTM−1p | H2 = U(q)

H1 = H3 =
1
2
U(q) | H2 = 1

2
pTM−1p

One can show that the first order term
vanishes in the shadow Hamiltonian,
which defined a second order method.
The first split is called the position Ver-
let algorithm , and the second the ve-
locity Verlet algorithm . Let’s focus on
the velocity algorithm, this split is equiv-
alent to the following canonical change
of variable :

P̂ = P− h
2
∇U(q) (2.7)

Q = q+
h

2
pTM−1p (2.8)

P = P̂− h
2
∇U(Q) (2.9)

This consist in a first drift h
2
∇U(q,

following by a kick h
2
pTM−1p and a final

kick. This respect the hamiltonian srtuc-
ture of the system and gives the follow-
ing propagation matrix :

T (δτ) =
(

1− δτ2

2
δτ

−δτ
(
1− 1

4
δτ2

)
1− δτ2

2

)

Here we find an unitary matrix, which
conserves a pseudo energy, but not the
true Hamiltonian. This non conservation
of the Hamiltonian is related to non or-
thogonality of eigenspaces, however we
can still study the so called conserved
pseudo energy and show that :

⟨0|A|0⟩ = ⟨τ |A|τ⟩
⇒ A ≡ T †AT

⇒ A ∝
(
1 0
0 1

(1−δτ2/2)2

)
−→
δτ→0
∝ H

Hence, this time step dependent pseudo-
energy converged to the wanted con-
served value. This can be related to the
discussion on the shadow Hamiltonian,
were we saw that the Hamiltonian de-
scribing the system in these kind of inte-
gration was changing, due to commuta-
tor terms. Hence, the true energy is not
conserved but the energy corresponding
to the exact description of the integra-
tion system is definitely conserved.
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H1(p)→ half drift

H2(q)→ kick

Figure 2.2 – Here we compared the con-
struction of the flow map for the euler and
the velvet algorithm. We can see that for
great time steps the Euler algorithm di-
verges from the true flow map, while the
velvet algorithm stays close to the true
flow map.

This is quite relevant to notice that
for periodic system the euler algorithm is
definitely not stable due to the non con-
servation of the volume. We can also see
that as a consequence of taking the tan-
gent for each time steps of the true flow
map and will leads to exponential diver-
gence from the trajectory in the phase
space. This is why the velvet algorithm
is a better choice for time integration of
Hamiltonian systems.

δτ = 0.01 δτ = 0.018

δτ = 0.03

HO

Euler

Velocity Verlet

Figure 2.3 – To have a more general view
of the efficiency of the integration scheme
using a simple Harmonic oscillator we plot-
ted the phase space trajectories for the Eu-
ler and the Velvet Algorithm, for two dif-
ferent timestep values

Constant Temperature
Dynamics

In molecular dynamics simulations,
maintaining a constant temperature
is essential for studying temperature-
dependent properties and sampling the
right thermodynamic ensemble. Vari-

ous thermostats have been developed to
control the temperature of the system,
each with its own advantages and lim-
itations. In this chapter, we will ex-
plore some common thermostats used in
constant-temperature molecular dynam-
ics simulations and discuss their proper-
ties.

I. Different Ensembles

In statistical physics, an ensemble is
a large collection of hypothetical copies
of a system, each representing a possi-
ble state that the system can be in. En-
sembles are used to describe the macro-
scopic properties of systems based on
the statistical behavior of their micro-
scopic components. The concept of en-
sembles is fundamental in statistical me-
chanics because it allows the connec-
tion between microscopic interactions
(the behavior of individual particles) and
macroscopic observable (such as tem-
perature, pressure, and magnetization).

A. Micro-canonical Ensemble

The micro-canonical set is the sim-
plest ensemble in statistical mechanics,
where the system is isolated and has a
fixed energy. It is described using a con-
stant number of particles N, volume V ,
and energy E. In an isolated system
the fundamental postulates states that
the system will explore all possible micro-
states with the same probability. Hence
we can define the density of micro-states
for the micro-canonical ensemble as :

ρeq =
1

Ω

Where Ω is the number of micro-
states of the system with energy E,some
key properties can be derived from this
definition, such as the entropy of perfect
gas, thermodynamic equilibrium pres-
sure and chemical potential properties,
but we will assume that known for the
reader. The Micro-canonical ensemble is
the one used when one simulate a phys-
ical system due to conservation laws re-
garding the Energy, however it is much
more convenient to work with constant
Temperature, for this we can introduce
the canonical ensemble.

II. Canonical Ensemble

R

ER + ES = E

S

NS, VS, ES

NR, VR, ER

Figure 3.1 – Canonical ensemble
schematic representation

In the Canonical ensemble we con-
sider that our system is in contact with a
biog reservoir, thus this two system com-
posed a bigger isolated system. Then
since the system S+R is a microcanon-
ical ensemble we get the following :

pS =
ΩR(ER = E − ES)

Ωtot

Considering the reservoir at equilibrium
we get :

ΩR(ER = E−ES) = exp
[
SR
kB
(E − ES)

]
then if we develop the entropy around
the mean energy of the system we get :

pS =
1

Z
exp

(
− ES
kBT0

)
This stands for the Boltzmann-Gibbs

distribution with Z defining the partition
function of the canonical ensemble and
verifying the following relation :

Z =
∑
s

exp(−Es/kBT0)

.
A simple formulation of the parti-

tion function can be derived counting
the degeneracy of the Energy level ω =
eS(e)/kB . This will lead to the following
expression :

Z =

∫
exp(−β(E − T0S(E)))dE

(3.1)
This motivates the definition of the

free energy F = E − TS, and develop-
ing this latter around its minimum at the
second order in the into grand gives the
following :

Z = e−β(E
∗−T0S(E∗))

√
2πkB

− ∂2S(E∗)
∂E2

(3.2)
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This can be used to prove that the free
energy is minimal at equilibrium in the
thermodynamic limit. But here we will
show that this imply a gaussian distri-
bution of the energy. Indeed using the
previous calculation is leads to :

p(E) ∝ e
(E−E∗)2
2kB

∂2S(E∗)
∂E2

The study of the second moment then
unearth :

⟨∆E2⟩ = −kB
∂2S(E∗)
∂E2

= kBT
2
0 CV

(3.3)
With CV = ∂E

∂T (eq,N,V )
the heat capacity

at fixed volume. This implied that the
considering this latter at constant in a
small range of temperature the energy
distribution is a gaussian whose width is
proportional to T 2.

III. Thermostats

This huge reservoir we used in the
canonical ensemble is called a thermo-
stat and is really convenient to dissipate
external constraints apply on our system
S while conserving a velocity in rough
correspondence with temperature. This
reservoir has to be able to exert forces
and absorb energy from the system, this
interaction can be defined in several ways
from deterministic to stochastic method.

A. Stochastic thermostat Thermostat

a) Andersen Thermostat

The Andersen thermostat consists
in refreshing the velocities of particles
with a given probability at each timestep
which P = vδt with the collision rate v .
The refresh process is done by drawing
a new velocity from the Boltzmann dis-
tribution at the given temperature, this
can be done from scrambling or for every
particles. This method is really simple
and do not introduce concerns about er-
godicity. However, despite the equation
of motion being unchanged too high col-
lision rate can dominate the underlying
dynamics, slowing down the speed of ex-
ploring the phase space, and breaking the
dynamics. Indeed it will leads to loss of
memory and exponential decay of auto-
correlation functions, while it is not the
case in many MD systems.

In order to tackle this issue Ander-
sen proposed ν ∝ CT ρ

2
3N−

2
3 as a typical

collision rate such that it should preserve
the dynamics in most cases.

b) Langevin Thermostat

Changing the dynamics of the sys-
tem

The Langevin thermostat is a
stochastic thermostat that introduces a

friction term and a random force to the
modified equations of motion. This ther-
mostat mimics the effect of solvent par-
ticles collisions on the particles of the
system (like the Anderson thermostat).
The random force is a gaussian force
whose amplitude is chosen independently
from the dynamics but only on the Tem-
perature of the system and the friction
coefficient, so the more we damp the
system the more we have to excitate it,
this ensure that even tough we increase
the damping effect the exploration of the
phase space will not be too slow despite
we broke the dynamics (as for the An-
dersen thermostat), on the other hand
if we decrease the damping the explo-
ration of the canonical distribution of en-
ergy will not be ensured. The position
Langevin equatiions in an harmonic po-
tential in stationary state are given by :0 = ξv(t)− kx(t) + f (t)⟨f (t)f (t ′)⟩ = Aδ(t − t ′)

⟨f (t)⟩ = 0

With the characteristic time τ = ξ/k
and the friction coefficient ξ. The solu-
tion can be written as following :

x(t) = x0e
−t/τ+τ−1

∫ t

0

e−(t−t
′)/τ f (t ′)dt ′

Amplitude of the noise

And one can easily assert what we
previously saw regarding the indepen-
dence of the random force with the dy-
namics.

⟨x(t)2⟩ = Aξ−2
∫ t

−∞
e−2(t−t

′)/τ

= Aξ−2
τ

2
=
kBT

k

We then got the following : A = 2ξkBT ,
this is a pretty interesting results since
the noise amplitude is directly propor-
tional to the friction constant (the more
we damped the more we excite).

Mean Square Displacement

At very short time the t the mean
square displacement (msd) ⟨δr 2⟩ is only
given by inertial effects (expending at the
first order) and using the equi-partition
theorem on the Kinetic energy,

⟨δr 2⟩ = d kBT
m
t2

For longer timescales we have to study

the effect of the friction term :

⟨(xt − x0)⟩2 = 2
(
⟨x2⟩ − ⟨xtx0⟩

)
,

= 2
kBT

τ

(
1− e−t/τ

)
this is done using the equi-partition the-
orem and :

⟨xtx0⟩ = 2kBT
τ
e−t/τ

For time t ≪ τ this leads to a dif-
fusive process recovering the Enstein re-
lation with the diffusion constant : D =
kBT

ξ
,

⟨(xt − x0)⟩2 = 2Dt
The τ constant is most of the time

several order of magnitude above the
characteristic time of the dynamics [2].
So we will generally considerate only the
inertial and the diffusive regime

D =
1

2
lim
t→∞

dδr 2

dt
(3.4)

D =
δr 2

2t
(3.5)

One can note that the memory
loss using the Langevin thermostat will
be continuously impacted by the white
noise, we used for sampling the canoni-
cal ensemble, leading to corrupted auto-
correlation functions. To deal with that
one can implement n memory term in
the noise [1, 2], which has to be cho-
sen carefully to not break the dynamics
of the system. In addition this stochas-
ticity break the continuous behavior of
the system, and leads to discontinuity in
average variables at least for andersen
method.

B. Deterministic Thermostat

Studying the stochastic thermostats
leads obviously to find and tweaks all the
parameters such that we can preserve
the physical behavior of the system, one
can argue that we can use deterministic
method to do the same sampling of the
canonical ensemble, however these kind
of methods generally lacks of ergodicity,
and hardly reproduce the typical varia-
tion of the Kinetic Energy in the canon-
ical ensemble [CITE].

a) Velocity Rescaling

The simplest way to obtain a con-
stant temperature dynamics is to rescale
the velocity by a factor :

v ′ =

√
K

K v (3.6)
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With K,K respectively the total Kinetic
energy and the desired Kinetic energy
derived from the targeted temperature.
Evans and Morriss (1983b) have shown
that it leads to the following ensemble
distribution p (r, q):

δ(K(p)−K0)δ(P− P0) exp
(
−V (r)
kBT

)
(3.7)

With P, K respectively the total mo-
mentum and kinetic energy. For the
conformation probability distribution it is
clearly the canonical one. For the mo-
mentum one, it does not fit the canonical
distribution. Which can lead to smaller
oscillation in kinetic energy than the ones
in the canonical ensemble. One can pro-
pose to add a specific timescale to re-
lax the normalization which defines the
Berendsen thermostat, where the veloc-
ity is this time slowing rescaled to the
desired value :

v′ = v

√
1 +
δt

τ
(
K

K − 1) (3.8)

With τ the relaxation time, this
method is really simple and can be used
for equilibration, however it is not time
reversible, and one can also show [1]
that it leads for vanishing τ to micro-
canonical ensemble and isokinetic for di-
verging τ . Rescaling the velocity seems
to be a too strong constraint to sample
correctly the canonical ensemble. On av-
erage, this will lead to the same results
as canonical sampling since every ensem-
ble is, in the thermodynamic limit, equiv-
alents, however for fluctuations depen-
dent observable this will exhibit wrong
results. These concerns were of strong
interest in the 80’s, leading to several
(partial) solution.

One way to solve this is to introduce
a random velocity rescaling to mimic the
fluctuations in the canonical ensemble,
this can be done using the simple Ve-
locity Rescaling (3.6) or the Berendsen
rescaling (3.8). To do so we just use
a random pick for the Kinetic Energy
drawn from the canonical distribution.

v ′ =

√
K̄

K , K̄ ∈

This is called Canonical Velocity rescal-
ing (CVR), and as shown by (Bussi),
under the assumption of ergodicity this
sample correctly the canonical ensemble.
One can argue that the dynamics can be
altered, because of this stochasticity.

An other totally deterministic ap-
proach is the Nose-Hoover formulation
of the Dynamics.

b) Nose-Hoover Thermostat

The main idea here is to extend the
system using two a new coordinate s and
a momentum ps representing the reser-
voir, the energy is then allowed to flow
between the system and the reservoir.
This leads to the following Hamiltonian
of the total system :

H = H(p, r) + p
2
s

2Q
+ gkBT

With Q the thermal inertia of the reser-
voir, g the number of degree of freedom
of the system. The choices of these pa-
rameter must me carefully done in order
to ensure close coupling between thern-
mostating and dyncamics. The ensem-
ble distribution is then :

exp

(
−H(q,p)
kBT

)
exp

(
−p2s
2QkBT

)
This beautifully stands for the canonical
distribution in q,p. However Nosehim-
self found that this approach was diffi-
cultly exploring the phase for very simple
system such as harmonic oscillator. In-
deed, Nothing to drive the drive the fluc-
tuations of ps [CITE] and fluctuations
of the thermostating velocites are neces-
sary to ensure the ergodicity of the sys-
tem, since it will fill difficulty the phase
space (coupling between the system and
the reservoir). One possible solution is
nose-hoover thermostatic chains, in or-
der to drive the thermostat velocities
with other reservoirs, this stands with
the CVR as a perfect solution but Bussi
argued we lost the beauty and the sim-
plicity of the theory multiplying the ther-
mostatic chain.

Figure 3.2 – length 2 Nose Hoover Chain
applied on harmoic oscillator, trajectories
are cought in an attractor, we do not re-
cover the cannonical ensemble distribution
(increase the number of chains [CITE],
from [CITE]

C. Comparing Thermostats

Several studies can be done to com-
pare the thermostat,the probability dis-

tribution function of the energy to see
if it matches the canonical one, with
high level of fluctuation. Regarding the
dynamics we have to see if the veloc-
ity auto-correlation function is not dom-
inated by thermostating effect, leading
to corrupted transport coefficient calcu-
lation.

a) Energy Distribution

Studying the impact of thermostat-
ing on the energy distribution is a simple
way to see if you correctly sample the
wanted ensemble without breaking the
ergodicity or the dynamics of the system.

Using (3.3) we unearthed that the
typical fluctuations of the energy in the
canonical ensemble should be quite im-
portant, proportional to T 2. To ck-
eck which thermostat was able to mimic
these fluctuations, we simulated a simple
LJ-fluids with 32 particles equilibrated by
different thermostats. The first step of
the study was to calculate CV for this
system, to do so we use the CVR, and
showed that the heat capacity was re-
maining constant in the range of study.

0 2 4 6 8

kBT

−100

−50

0

50

100

150

200

250

300

E

E = CV T

Figure 3.3 – Energy over Temperature,
this plot unearths a value of Heat capacity
at fixed volume : CV = 3.5e1 ± 1

Knowing that we can estimate the
canonical distribution of the energy at
second order using our previous study
(3.3).

p(E) ∝ e
(E−E∗)2
2kBT

2
0
CV
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K
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E

Figure 3.4 – On the left we plots PDFs of
potential V , kinetic K and total energy E
for several thermostats. On the right we
plot the normalized phase space hexbin his-
togram (in the sens of explorated domain
size

As intended the Maxwell Boltz-
mann, Andersen, CVR sample cor-
rectly the canonical distribution of en-
ergy, which appears normal consider-
ing their stochastic behavior. For the
VR, Berendsen thermostat their non-
canonical properties are clearly demon-
strated with very small fluctuations of
the Kinetic energy. However, one can
notice on the fig 3.4 that the phase
space exploration is inefficient for the
Maxwell-Boltzmann, Andersen ther-
mostat, with a very restricted explo-
ration of the conformation space, this
is mainly due to the fact that we broke
the system dynamic, thermostating the
velocities too often for this kind of ther-
mostat. This issue does not appeared in
the three other thermostats, where the
phase space exploration is efficient.

To put it in a nutshell thermostating
is a subtle problem where we have to find
the right equilibrium between sampling
correctly the ensemble we want and the
phase space in a reasonable time with-
out breaking the dynamics, and ensuring
ergodicity.

D. Calculating Transport Coefficients

To check if the thermostats pre-
serve the physics of the system, we

can study auto-correlations functions.
Indeed referring to (Haile and Gupta,
1983), suitable thermostats should pre-
serve the auto-correlations function of
the velocity. It is simply a way of cheek-
ing if the characteristic times of the
system are unchanged. In addition to
that a whole theory is dedicated to re-
cover transport coefficient from auto-
correlation functions (Green-Kubo rela-
tions). Here we will focus on the diffu-
sion constant, which can be calculated
from the velocity auto-correlation func-
tion (VACF).

a) Long time tails

In our simulated LJ-system the auto-
correlation function of the system should
decay slowly at large times, this is called
long time tails phenomenon and is uni-
versal in this kind of fluid system. The
first apparition of this result in the sci-
entific litterature was back in the 70’s
witj the work of Alder and Wainwright
simulating hard sphere.

Indeed they unearthed a long time
tailed of the form ∼ t− d2 contradicting
the believed exponential decay of auto-
correlation function (If we suppose that
the dynamic follows the Langevin equa-
tion it is quite straightforward that it is
the case). This dependancy was studied
afterward by Pomeau and Résibois using
long times hydrodynamics arguments.

The main idea is rely on the local
equilibrium implied by the presence of
multiple particle fig.3.5.b) these latter
will interact between each other, lead-
ing to a constant velocity in a small vol-
ume Ωt around the particle of interest, if
you consider n particle interacting in this
small volume then :

v(τ) = v(0)/nΩt

This volume will spread with time
fig.3.5.c) dominated by hydrodynamic
long time viscosity effect :

Ωt = (νt)
d
2

with d the dimension of the system. This
leads to the following expression for the
velocity auto-correlation function :

v(τ) ∼ v(0)
(
1

νt

) d
2

(3.9)

Ωt
Ωt

vx(t) vx(t
′′)vx(0)

Rt
Rt ′′

a) b) c)

Figure 3.5 – Schematics picturing the slow
decay of auto-correlation functions, re-
draw from (Pomeau, Resibois [3])

This dissipative spreading of the
small volume Ωt can be pictured by the
following reasoning : considering a par-
ticle interacting in a repulsive way with
others particles, this interaction will cre-
ate an eddy behind the particle that
will ensure that the particle continue in
its original direction during a sufficiently
long time.

Memory loss

This slow memory loss is a key fea-
ture of the system, and can be used to
check if the dynamics of the system is
preserved by the thermostat. Indeed if
the thermostat is too strong, the long
time tail will be altered.

0.0

0.2

0.4

0.6

0.8

1.0 MaxwellBoltzmann Andersen

0 20 40

0.0

0.2

0.4

0.6

0.8

1.0 VR

0 20 40

Canonical VR

V
C

A
F

1/τ

τ−1

e−τ/τ0

Figure 3.6 – Normalized Velocity auto-
correlation function

Dependance of the density

To fall in this regime the system has
to be dense enough as highlighted by
[4]. Indeed the long time tail is a collec-
tive effect, and will be more pronounced
in dense system, where the particle are
more likely to interact with each other
and the vortex formation may not be sus-
tained. To ckeck this behavior we sim-
ulated the same 2d system. Since the
regime we studies should be dominated
by collisions, we must know the time be-
tween the collision, the Enskog kinetic
theory predicts :

τE =
1

4ρσ2g(σ)

√
m

πkBT
(3.10)

With g(σ) the radial distribution func-
tion at the contact distance σ, this will
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be the characteristic length of the LJ po-
tential in our case. For hard spheres it
gives the following [CITE] :

g(σ) =
1− πσ3ρ/12
(1− πσ3ρ/6)3

We then decided to normalize the time
by this time, and plot the VACF for dif-
ferent densities. Hence the density de-
pendancy should not play a role anymore
if it has only an effect on the collision
time.

0.2 0.4 0.6 0.8 1.0

τE/τ

0.1

0.2

0.3

0.4

0.5

0.6

0.7

V
C

A
F

ρ = 0.10

ρ = 0.23

ρ = 0.37

ρ = 0.50

Figure 3.7 – Normalized Velocity auto-
correlation function over the approximated
frequency of collision.

The density dependancy is not visible
anymore except for very low or high colli-
sion frequency, and the VACF arounf the
order of magnitude of the collision time
is as expected comparable to ∼ τ−1

b) Calculation of Diffusion Constant

The calculation of the velocity auto-
correlation function is of great interest
since it can be used to calculate the dif-
fusion constant of the system, indeed we
have :

D = lim
t→∞

1

2t
⟨∆r 2(t)⟩

= lim
t→∞

1

2t

∫ t

0

∫ t

0

dt ′′dt ′⟨v(t ′′ − t ′)v(0)⟩

= lim
t1→∞

1

2t

∫ t

0

dt ′
∫ t

0

dt ′′⟨v(t ′′)v(0)⟩

= lim
t→∞

1

2t

∫ t

−t
C(τ)dτ

∫ min(2t−τ,2t+τ)

max(−τ,τ)

dv

2

= lim
t→∞

∫ t

0

C(τ)(1− |τ
t
|)dτ

=

∫ ∞

0

C(τ)dτ

We lead this integration explecitely since
it is rarely done in the literature, we used
the following change of variable :

τ = t ′′ − t ′, v = t ′′ + t ′

The final expression is only valid when
C(τ) decays faster than 1

τ
otherwise we

got a logarithmic growth of the integral
over time, this one of the numerically
challenging issue when we focus on long
time decay of the VACF, since we need
to push the integration further, and run
longer simulation. In 2d simulations we
might even not be able to integrate be-
cause of the logarithmic growth of the
integral. This way of calculation is com-
monly use but one should remember this
integration subtility. With this latter we
now have three way of calculating the
Diffusion coefficient, one can ask which
one is the most reliable depending on the
situation. M.P.Allen and D.J.Tidesley
already discussed about it [2], and drew
the following conclusions. For exponen-
tial decay of the VCAF, it might be more
accurate to compute gradient of the msd
rather than dividing it by the time. So
we will generally prefer (3.4) than (3.5).
Regarding the calculation of the diffusion
constant using the auto-correlation inte-
gration, we just need to integrate over
the whole time to not miss long-time
contributions.
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Figure 3.8 – Diffusion coefficient over time
using the previous described methods

Metropolis Algorithm
I. Monte Carlo Integration

In Monte Carlo integration, we esti-
mate an integral

I =

∫
Ω

f (x) dµ(x)

by averaging the function values at a set
of randomly sampled points. If we sam-
ple N independent and identically dis-
tributed (i.i.d.) points x1, x2, . . . , xN uni-
formly over the domain Ω, the Monte

Carlo estimate of the integral is given
by:

I = V (Ω)⟨f (x)⟩Ω

ÎN =
V (Ω)

N

N∑
i=1

f (xi).

The Monte Carlo estimate is unbi-
ased, meaning that the expected value
of the estimate is equal to the true inte-
gral. But one can remark that the con-
vergence is quite slow, indeed for the uni-
form sampling we evoked before it leads
to the following variance of the estima-
tor :

σ2(ÎN) =
V (Ω)2

N
σ2(f (x)) (4.1)

the error can then be estimated bu the
standard deviation σ which converges as
O( V√

N
). This is quite promising since

the error convergence rate is indepen-
dent of the dimensionality which beats
the "curse of dimensionality". Indeed for
a simple deterministic 2nd order Simson
rule the convergence will in a space of
dimension d : O(N2/d), due to the num-
ber of evaluation we do. However one
could not be satisfied by this poor con-
vergence rate of 1

2
. Some solutions can

be proposed as non-uniform sampling or
important sampling.

II. Importance Sampling in Monte
Carlo Simulations

Importance sampling is a technique
used in Monte Carlo simulations to im-
prove the efficiency of sampling by re-
ducing the variance of the estimator.
The goal is to focus computational effort
on regions of the state space that con-
tribute most significantly to the density
of states. However this sampling cannot
be done without care and should respect
some properties of the density of states
such as its constancy at equilibrium.

A. Concept of Detailed Balance and
Equilibrium

In statistical mechanics, detailed
balance is a condition that ensures a sys-
tem will reach and maintain equilibrium.
It requires that, for any two states ν and
µ, the rate of transitions from ν to µ
must equal the rate of transitions from
µ to ν at equilibrium. Mathematically,
this condition is written as:

P (ν)W (ν → µ) = P (µ)W (µ→ ν)
(4.2)
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This ensures that at equilibrium the
probability distribution remains un-
changed over time. This detailed bal-
ance properties, appears simple but re-
strict set of possible scheme Monte
Carlo simulation.Indeed if we consider
the following scheme for a Physics sys-
tem, where we choose to do a move
in the phase space dependind on the
implied energy variation ∆E :{

If ∆E < 0, accept the move
If ∆E > 0, reject the move

Since the scheme does not allow up-
ward energy fluctuations (where ∆E >
0), the condition:

P (ν)W (ν → µ) = P (µ)W (µ→ ν)
is not satisfied for all transitions. Here
we understand that thermal fluctuations
are crucial for the system to explore the
entire configuration space properly.

B. Metropolis Algorithm

To ensure that the Monte Carlo al-
gorithm preserves detailed balance, tran-
sitions that increase energy must be al-
lowed with appropriate probabilities most
of the case it is given by the canonical ra-
tio of the two state probabilities pµ, pν).
This is typically done using the Metropo-
lis algorithm. Indeed, The Metropolis
criterion ensures that the detailed bal-
ance condition is satisfied because:

W (ν → µ)
W (µ→ ν) =

P (µ)

P (ν)
= exp

(
− ∆E
kBT

)
,

where ∆E is the energy difference be-
tween states ν and µ. This allows
the system to transition both to higher
and lower energy states, maintaining the
equilibrium distribution.

III. Ising Model

The Ising model is a fundamental
model in statistical physics used to study
phase transitions and critical phenom-
ena.

T = 2.041 T = 2.591

Figure 4.1 – Two configurations of the
same random walker (respectively for T <
TC and T > TC , with TC ≈ 2.269 using a
L = 32 size periodic ising model

It consists of discrete spins arranged
on a lattice, where each spin can point
up or down and interacts only with its
neighbors. Ising model is a really sim-
ple model that unearth some interesting
physical behavior while studying phase
transitions.

A. Theoritical Background

The constant coupling ising model is
defined by its Hamiltonian:

H = −J
∑
i ,j

sisj − B
∑
i

si

Where si are the spins laying on a d
dimensional grid, J is the coupling con-
stant, and B is the external magnetic
field. This model has been solve ex-
actly for dimension 1 and only without
external magnetic field in dimension 2.
Some simplifications can be made con-
sidering Mean Field Approximation, but
these approximation leads to misleading
behavior near the phase transitions with
wrong critical exponent. Here we can de-
fine two important quantities, the spon-
taneous magnetization and the coupling
term M,Q :

M =
∑
i

si

Q =
∑
i ,j

sisj

Generally we study the reduced quantity
m, q with respectively : m = M

N
and

q = Q
N

, we will also define the suscepti-
bility χ = ∂m

∂B
.

Phase Transitions

For the next discussion we will fo-
cus on thermodynamic limit, the system
at stake will then be infinite. A phase
transition occurs when a given quantity
called the order parameter change from
a zero value to a non zero value (for fer-
romagnetic system the order parameter
is the spontaneous magnetization). De-
pending on the behavior of the system at
the critical point one can define several
type of phase transition.

For first order transition first deriva-
tives of the free energy are discontinu-
ous at the transition temperature. For
the second order first derivatives are
continuous. It will lead to metastable
states or hysteresis phenomena in the
first case and critical phenomena in the
second case, with divergence of correla-
tion length and time. In our case a 2nd
order transition can be observed while
sweeping the temperatures, and 1st or-
der while seeping the external magnetic
field for fixed temperature

Applying these definitions to our
Ising model, we can unearth this two or-
der of transition.

Magnetization discontinuity for first or-
der transition

For sufficiently low temperature, bel-
low the critical temperatures. One can
find a first order transition for B =
0 while sweeping the external mag-
netic field B. The system will un-
dergo an abrupt change from a posi-
tive or negative magnetization depend-
ing on the starting state, for example if
we start from a positive magnetization
state we will go from Msp(B → 0+) to
−Msp(B → 0−). We can illustrate that
using the simple mean field approxima-
tion , we recall that this leads to the fol-
lowing expression :

m = tanh
(
4Jm + B

kBT

)
(4.3)

kBTx − B
4J

= tanh(x)

With x = 4Jm+B
kBT

. This implicit equa-
tion can be solved graphically, for T
bellow critical temperature ( Tc = 4J

kB
,

which is not the write value for the 2d
ising model). For now we will limit our-
selves to the following two case (m < 0,
B < 0) and (m > 0, B > 0).

−B
kBT

x0 x1

x2

T < Tc , B > 0

x

tanh x

kBTx−B
4J

Figure 4.2 – Graphical resolution of the
mean field equation (4.3) for T < Tc and
B > 0

If we limit to the case (m > 0, B >
0), only the x2 solution is feasible since
we got the following requirements x > 0,
one can also suggest graphically that
the x2 value has an infimum independent
from the magnetization and only depen-
dent of the temperature since it’s a solu-
tion of an implicit equation independent
of m x+ > 0. This will lead in the limit
of vanishing magnetic field starting from
positive magnetization

m+ = x+kBT
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From the same reasoning we got simi-
larly

m− = −x+kBT
With this simple modeling we explain
how the ising model can exhibit disconti-
nuities in the order parameter and hence
a first order transition, another cleaner
proof can be done using fluctuation dis-
sipation theorem [5], exhibiting divergent
behavior of the susceptibility at the tran-
sition point.

χ =
N

kBT
(⟨m2⟩ − ⟨m⟩2) ∝ N (4.4)

Despite its usefulness this model
present some limitations for this order of
transiting, the mean field approximation
consists in considering small fluctuations
at the transition, this locality leads to
meta stable states, that cannot exist in
the 2d infinite ising model, since it is al-
ways at equilibrium. This metastables
states arised from the x0, x1 solution and
scales with the Coupling Constant of the
system (see fig.4.3).
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Figure 4.3 – Magnetization Isotherm for
several coupling constants, solved using
approximation of the implicit equation

Here we see the characteristic hys-
teresis behavior of the first first or-
der transition for the mean field apIs-
ing model, and results from the local-
ity of the approximation, highly corre-
lated structure are then more resistant
to change of the external magnetic field.

Critical behavior for Second Order Tran-
sition

For second order transition, one
can show that thermodynamic proper-
ties scales as power low of the reduced
distance to the critical temperature ϵ =
|1− T

Tc
|.In the Ising model, Onsager un-

earthed that a second order transition is
obtained for B = 0, ϵ → 0. In this case

we can express with this kind of power
laws the order parameter m, the heat
capacity CV and the magnetic suscep-
tibility χ, which respectively character-
ized how the system react to a change
of Temperature and External Magnetic
Field. The exponents of theses laws are
called critical exponents and are usually
constants for T > TC and T < TC (fore
the amplitude of the power law this is
not the case [6]). for the magnetization
it is more complicated in the ising case,
since it should vanish infinitely fast at 0,
when T > Tc . For example in the Ising
model we got the following scaling laws
when ϵ→ 0 [7].

m ∼ ϵβ , β =
1

8

CV ∼ ϵ−α , α = 0

ξ ∼ ϵ−ν , ν = 1

χ ∼ ϵ−γ , γ =
7

4

With m the magnetization, CV the
heat capacity, ξ the correlation length
and χ the magnetic susceptibility. These
critical exponents are universal, meaning
that they are independent of the micro-
scopic details of the system.

a) Finite Size Effect

Since we cannot simulate an infinite
system, we have to restrict to finite sys-
tem where the thermodynamic limit is
not ensured anymore, for this study we
will not consider boundary effect that
can play an important role at the criti-
cal point [6].

Finitness of a system lead to impor-
tant change in the critical behavior, in-
deed the thermodynamic properties are
smoothed and do not diverge near the
transition point [6], and the order pa-
rameter change continuously during the
transition, this might lead to difficulty
distinguishing 1st and 2nd order transi-
tion. For second order transition in fi-
nite system the correlation length can-
not diverge (as in first order transition)
because it is obviously limited by the sys-
tem size L.

For first order transition the discon-
tinuity of the magnetization is smeared
out by the finite susceptibility, leading to
a continuous variation of the magnetiza-
tion while sweeping B contradicting our
previous study.

First Order Transition in Finite Size Sys-
tem

Here we will consider the most inter-
esting case for finite size i.e T < Tc . In

these conditions the system will undergo
a smooth change of magnetization, and
one could unearth some metastable state
due to the locality implied by the finite
size. Indeed even if we let the system
equilibrate it will be trapped in these lo-
cal minima of free energy due to pre-
dominance of surface effect. In addi-
tion to that the susceptibility is no more
spiking for equilibrium state (as we saw
previously) [5]. Indeed due, to finit-
ness the susceptibility is bounded and
evolves proportionally to the system size
(eq.4.4), explaining the smooth change
of the magnetization (see fig.4.4).

Figure 4.4 – Variation of the magnetiza-
tion in a finite Ising model, Msp denotes
the magnetization at for the infinite phase
transition, ML for the finite one, from
(Landau, David P. and Binder, Kurt, 2014)
[6]

.

The system will then jumped back
and forth between the two minimum
of the free energy, leading to a un-
evenly weighted bimodal distribution of
the magnetization (see fig.4.5). The ex-
istence of metastable states results in
hysteresis loop depending on the start-
ing configuration. Hence we can see
that determining the critical point can be
really hard knowing this hysteresis phe-
nomenons, since it is constantly shifted
by the existence of metastable states
whose weight is dependent on the system
size and the simulations parameters.

This bahavior had been studied in
the fig.4.5. Where the characteristic bi-
modal distribution appeared, the width
size dependancy shows correct agree-
ment with [6], with narrower distribution
for higher L. The size dependant slope
is also clearly visible, denoting finite sus-
ceptibility at the transition point ∝ N.

11 Andrea Combette

https://github.com/Chatr0uge/lecture_notes_CSP


CHAPTER 4. METROPOLIS ALGORITHM Master SdM ENS | ENSL

In our study the hysteresis behavior has
only been found for T < TC as opposed
to [8] where they used sinusoidal driv-
ing. The number of sweeps we used for
Monte carlo simulations does not seem
to play a great role contradicting at first

sight the results of [8], but here they
used logarihmic valued of the sweeping
parameter, this can lead to very fast ex-
ploration of the phase space but also to
issues in the equilibration of the walk-
ers. The simulation temperature has in-

teresting impacts on the hysteresis be-
havior. Indeed, increasing the temper-
atures seems to decrease the hysteresis
effect, while reducing the population in
the metastable states.
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P
D
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−ML ML −ML ML −ML ML −ML ML −ML ML

N = 500 N = 600 N = 700 N = 1000

Figure 4.5 – On the top row, we plot the magnetization evolution while seeping the magnetic field B for different system size. The bottom
row shows the corresponding histogram of the magnetization for T = 2 and several Monte Carlo sweeps (N). Red transparent dots stands
for simulations done near the critical point T = 2.269, and black solid dot correspond to T = 2 < TC . To get this clear metastability
we started with negative B for all-down-state, and with positive B for all-up-state, then we increased and decreased respectively the
magnetic field until we reach the opposite conformation. The sweeping frequency study has been motivated by [8] where it is shown that
the magnetic sweeeping rate has a strong impact on the hysteresis below and above TC

In first order transition oner can
show [6] that the size of the system
only play a role in the width and in the
ampllitude of the distriubution with the
same contribution a Ld factor. One can
then understand that smart rescaling can
leads to correct infinte behavior of the
simulation.

In 2nd order phase transition the
thermodynamics are governed by critical
power laws, so we expect this finite scal-
ing to change.

Second Order Transition in Finite Size
System

It might seem more difficult to ex-
tract inifinte behavior for this kind of
power laws. However one is able quite
straightforwardly to extract infinite be-
havior from finite size simulations con-
sidering finite size scaling of the free en-

ergy [6] (this express the dependancy of
the free energy over the length of the
system in a simple way). Differentiation
of this latter yields the following scaling
laws for the order parameter and the sus-
ceptibility.

mL = L
−β/νM0(ϵL

1
ν ) (4.5)

χL = L
γ/νχ0(ϵL

1
ν ) (4.6)

WhereM0, and χ0 are scaling func-
tions of the infinite system. Then we
can easily propose to rescale the finite
thermodynamics properties by the cor-
responding length dependencies, and to
use the rescaled relative distance to the
critical temperature ϵL

1
ν . For example

here we studied the rescaled susceptibil-
ity and magnetization for different sys-
tem size (see fig.4.6).
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Figure 4.6 – Scaling laws for respectively
the susceptibility and the magnetization
for different system size. The simulations
have been done using 10 random walkers
with 500 checkboards sweep.
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First the curves collapse on a single
one, proving the validity of these scal-
ing laws over the finitness of the system.
In addition to that we recover quite pre-
cisely the infinite scaling laws for the sus-
ceptibility and the magnetization. With
the same slope for heating or cooling
down the system for χ. For the mag-
netization it seems to exhibit a 7

8
critical

exponents already discussed in [6].

b) critical slowing down

As we saw previously the correlation
length is diverging when we reach TC ,
long wavelength phenomena are then
dominant. In this situation one can un-
derstand that local spin flip will not lead
to correct sampling of the phase space
since it does not allow to perturb the
highly correlated system. For a con-
stant observable A, one can show (Ho-
henberg and Halperin, 1977) that the
spatial components Ã(q) of the Fourier
transform Ã follows the following rela-
tion :

τAA = (DAAq
2)−1

With DAA a transport coefficient.
For example in spin exchange trial
Move (Kawasaki), the concentration for
each spin values is maintained constant.
Hence for due to divergence of the cor-
relation length the time to decorrelate
the system will diverge as well, leading
to a critical slowing down. To tackle this
issues on can propose other trial move
than just a local flip of one spin. The
idea is then to flip larger domains of the
system while preserving the flux of ran-
dom walker (4.2). This can be done us-
ing percolation method (Wolff cluster al-
gorithm) to determine the spins to flip in
a single move, in this case we can choose
the percolation rate in order to always
flip the selected cluster while preserving
the flux, which leads to extremely fast
exploration of the phase space. Check-
boards methods can also be used to ap-
ply basic flip trial on all non neighboring
spins without breaking the simulations.

IV. Thermodynamic Integration

Thermodynamic integration is a
method used to compute the free en-
ergy. The major issue is the impossibility
of sampling all the phase space in a sim-
ulations. Indeed the free energy is de-
rived using the partition function of the
ensemble

F = −kBT logZ
The partition function is a sum over

all the possible states of the system, and
is then impossible to compute exactly.

However, the exact value of the free en-
ergy is not necessary, since we are often
interested in the relative free energy be-
tween two thermodynamic states. We
can then use several method to directly
or iteratively calculate this differences.

A. Kirkwood Coupling Parameter

The Kirkwood coupling parameter
method provides a simple way to connect
two states using a linear interpolation pa-
rameter λ between their Hamiltonians:

H(λ) = (1− λ)H0 + λH1,
where H0 and H1 are the Hamiltonian of
the initial and final states. The deriva-
tive of H(λ) with respect to λ is given
by:

∂H(λ)

∂λ
= H1 −H0.

The Free energy has interesting
properties related to the derivative of
the Hamiltonian, indeed supposing the
Hamiltonian can be written as a function
of the coupling parameter λ, we can ex-
press

dF

dλ
= ⟨dH(λ)

dλ
⟩λ

Thus, the free energy difference between
the two states |1⟩ , |2⟩ is given by:

∆F =

∫ 1

0

⟨H1 −H0⟩λ dλ.

a) Mechanical and Thermodynamic
Observable

One can notice that we link the
derivative of a global thermodynamic ob-
servable depending over the whole phase
space to the derivative of a measur-
able mechanical observable H defined for
each specific state. This is the general
the idea of the thermodynamic integra-
tion, linking the global thermodynamic
properties to the local mechanical prop-
erties.

b) Ising Model case study

In the Ising Model defined previsouly
one can easily verify that :{ ∂F

∂B
= ⟨M⟩

∂F
∂k
= −⟨Q⟩

Hence at first order for a small
change of the magnetic field B and the
coupling constant k we can easily com-
pute the free energy difference between
two states (hi , ki), (hj , kj) by expending
F around these two points.

∆F =
hj − hi
2
(⟨M⟩i + ⟨M⟩j)

+
kj − ki
2
(⟨Q⟩i + ⟨Q⟩j)

This concludes the basic Kirkwood
scheme for our model, in a practical way
it is useful to use neighboring states for
this type of integration, so the expan-
sion will not be too coarse. Hence, for
computing the free energy difference be-
tween two far states one have to find
a path of neighboring states between
this two states (this is called Thermo-
dynamic integration. It will lead to the
following formulation of the free energy
difference.

∆F =

N∑
i=1

hi+1 − hi
2

(⟨M⟩i + ⟨M⟩i+1)

+
ki+1 − ki
2

(⟨Q⟩i + ⟨Q⟩i+1)
(4.7)

B. Exponential Averaging

Exponential averaging, or the Ben-
nett acceptance ratio method, is an al-
ternative approach that improves the ef-
ficiency of free energy calculations. It
uses an exponential weighting of energy
differences to minimize the impact of
poorly sampled regions. From dividing
the two associated partition functions
one can show that, the free energy dif-
ference can be calculated as:

∆F =
1

β
log ⟨exp (β(H1 −H0))⟩1 ,

Hence using thermodynamic integra-
tion we can easily compute the free en-
ergy for a given path.

∆F =

N∑
i=1

log ⟨exp ((Hi −Hi−1))⟩i

(4.8)
This method is more genrally more pre-
cise than the Kirkwood coupling param-
eter since it does not use the 1st order
approximation of the free energy.

V. Multi Histogram Analysis

The goal here is to compute the den-
sity of states Ω(M,Q) for the 2d ising
model, in order to do so we will use the
multi histogram analysis. This method
is based on the following idea, we will di-
vide the phase space (M,Q) in N2 bins,
and compute the probability of finding
the system in each of these bins. The
density of states for a given group of
walker ν is then given by the following
relation in the canonical ensemble :

Ων(M,Q) = Pν(M,Q)e
(β(Eν (M,Q)−Fν ))

(4.9)
Where Pν(M,Q) = ⟨Nν (M,Q)Nν

⟩ is the
probability of finding the system in the
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bin (M,Q) for the group of walker ν.
From this we can derive all the thermo-
dynamic quantity of the system for one
group of walker ν, i.e one pair of value
(h, k). One can already tell that sam-
pling the entire phase space (M,Q) using
only one pair of value h, k is unfeasiblem
hence we need to find a way combining
several group of walker, and weight their
contribution to the final estimation Ωest
of the densoty of states.

This is generally done using the
WHAM, weighted histogram analysis :
Where the estimate is computed using
the following relation :

Ωest(M,Q) =

∑
ν
NνΩν(M,Q)∑

ν
Nν

(4.10)
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Figure 4.7 – Here we computed the den-
sity of state estimation using WHAM for
4 different typical cases on a L = 32 size
Ising model. To obtain this estimation we
compiled all the datasets used for our pre-
vious studies including several starting con-
figuration (all-spin-up, all-spin-down,
random), different number of random walk-
ers, and different random walk length. The
Intermediate computation of the free en-
ergy used Thermodynamic Integration and
Exponential averaging over all the data
collected

However the exponential term in
Ων(M,Q) can be a source of numerical
instability, hence it is often replaced by

the following relation :

Ωest(M,Q) ≈
∑
ν
Nν(M,Q)∑

ν
Nνeβ(Fν−Eν (M,Q))

In the figure 4.7 we can see the es-
timation of the density of states for the
2d ising model, it appears that the den-
sity of states for the zeros external field
is close from the litterature one. Interst-
ing things can be notice here, in the the
case of T < TC the two branch of the
magnetization valid in low magnetic ex-
ternal field vanish, this is probably due to
the anti-ferromagnetic value of the cou-
pling constant, decreasing other weights.
One can verify that we recover the two
branches (metastable state) when we
compute the density only with positive
value of the coupling constant.

For T > TC one can see that ex-
ternal magnetic field will broaden the
distribution in the "tail" of the den-
sity of states,which seems totally cor-
rect since magnetized state are more
probable in non vanishing magnetic field,
here we also lose the branches of the
magnetization which is physically correct
(we can verify that removing the anti-
ferrmoagnetic contribution).

This conlude our study on the 2d
ising model and more globally on this
introduction to computationnal statis-
tical physics. Some concerns should
be raise about free energy calculation
since we absolutely need to do not have
large unexplored domain of the phase
space, to compute it. In order to do
so one can design clever method to
avoid being trapped in some region of
the phase space wuile simulating (par-
alell tempering, cluster algorithm, multi-
canonical sampling . . . ), but we will not
discuss this here, and let the reader refer
to the litterature for more information.
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