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Chapter 1

Introduction

This project aims at discovering new structures
of neural networks and their applications to cos-
mology. In particular, we will focus on two types
of neural networks: Generative Adversarial Net-
works (GANs) and Diffusion Deep Probabilistic
Models (DDPMs). We will study their theoreti-
cal background, their architecture and their ap-
plications to cosmology. We will also compare
their performances and discuss their advantages
and disadvantages.

I Context

1 Generating realistic matter field

Generating density matter fields is crucial for sev-
eral reasons. First, it allows us to simulate the dis-
tribution of matter in the universe, which is fun-
damental to cosmology. By understanding how
matter is distributed, we can gain insights into
the structure and evolution of the universe. Sec-
ond, these simulations can help us test theories of
cosmology and astrophysics. For instance, they
can be used to predict the distribution of galaxies
or the cosmic microwave background radiation.
Lastly, generating realistic matter fields can also
be a stepping stone towards more complex sim-
ulations, such as those involving dark matter or
the formation of galaxies.

Previously generating matter fields was done
using N-body simulations. However, these simu-
lations are computationally expensive and time-
consuming. Therefore, it is necessary to find new
methods to generate matter fields. This is where
machine learning comes in, because it allows us
to generate matter fields in a much faster way.

2 Machine Learning tackling the prob-
lem

To tackle this generation tasks, 3 types of neu-
ral networks could be used: Generative Adversar-
ial Networks (GANs), Variational Autoencoders
(VAEs) and Diffusion Deep Probabilistic Models
(DDPMs). These neural networks are all based
on Gaussian approximations and are trained on a
dataset of matter fields, and then used to generate
new matter fields.

a GANs

A generative adversarial network (GAN) is a class
of machine learning framework and a prominent
framework for approaching generative AI. The
concept was initially developed by Ian Goodfel-
low and his colleagues in June 2014.In a GAN,
two neural networks contest with each other in
the form of a zero-sum game, where one agent’s
gain is another agent’s loss.

Given a training set, this technique learns to
generate new data with the same statistics as
the training set. For example, a GAN trained
on photographs can generate new photographs
that look at least superficially authentic to hu-
man observers, having many realistic characteris-
tics. Though originally proposed as a form of gen-
erative model for unsupervised learning, GANs
have also proved useful for semi-supervised learn-
ing,fully supervised learning, and reinforcement
learning.

The core idea of a GAN is based on the "indi-
rect" training through the discriminator, another
neural network that can tell how "realistic" the
input seems, which itself is also being updated
dynamically.This means that the generator is not
trained to minimize the distance to a specific im-
age, but rather to fool the discriminator. This en-
ables the model to learn in an unsupervised man-
ner.

GANSs are similar to mimicry in evolutionary
biology, with an evolutionary arms race between
both networks.

b DDPM

In machine learning, diffusion models, also known
as diffusion probabilistic models or score-based
generative models, are a class of generative mod-
els. The goal of diffusion models is to learn a
diffusion process that generates the probability
distribution of a given dataset. It mainly con-
sists of three major components: the forward pro-
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cess, the reverse process, and the sampling proce-
dure. Three examples of generic diffusion mod-
eling frameworks used in computer vision are de-
noising diffusion probabilistic models, noise con-
ditioned score networks, and stochastic differen-
tial equations.

Diffusion models can be applied to a variety
of tasks, including image denoising, inpainting,
super-resolution, and image generation. For ex-
ample, in image generation, a neural network is
trained to denoise images with added gaussian
noise by learning to remove the noise.After the
training is complete, it can then be used for im-
age generation by supplying an image composed
of random noise for the network to denoise.

Diffusion models have been applied to gener-
ate many kinds of real-world data, the most fa-
mous of which are text-conditional image gener-
ators like DALL-E and Stable Diffusion. More
examples are in a later section in the article.

¢ VAE

In machine learning, a variational autoencoder
(VAE) is an artificial neural network architec-
ture introduced by Diederik P. Kingma and Max
Welling. It is part of the families of probabilistic
graphical models and variational Bayesian meth-
ods.

Variational autoencoders are often associated
with the autoencoder model because of its archi-
tectural affinity, but with significant differences
in the goal and mathematical formulation. Vari-
ational autoencoders are probabilistic generative
models that require neural networks as only a part
of their overall structure. The neural network
components are typically referred to as the en-
coder and decoder for the first and second compo-
nent respectively. The first neural network maps
the input variable to a latent space that corre-
sponds to the parameters of a variational distribu-
tion. In this way, the encoder can produce multi-
ple different samples that all come from the same
distribution. The decoder has the opposite func-
tion, which is to map from the latent space to
the input space, in order to produce or generate
data points. Both networks are typically trained
together with the usage of the reparameterization
trick, although the variance of the noise model
can be learned separately.

Although this type of model was initially de-
signed for unsupervised learning, its effectiveness
has been proven for semi-supervised learning and
supervised learning.
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3 Datasets specifications
a Quijote Simulations

Quijote provides not only thousands of simula-
tions on different latin-hypercubes, but the a total
number of 44,100 N-body simulations, with billion
of halos, galaxies, voids and millions of summary
statistics such as power spectra, bispectra...et,
to train machine learning algorithms. In our case
we will use the fiducial simulations.Those are sim-
ulations with a fiducial cosmology consistent with
Planck. They only vary the initial random seed.
We will only use N3 = 2563 cubes with a redshift
parameter z = 0, to get the filamentary structures
of density fields (Gaussian -> filamentary struc-
tures). These cubes are avarage over 2 voxels in
z-direction, to get a more isotropic dataset. The
size of the cubes being L = 1Gpc/h. Then each
256 voxels width squares are sliced in 16 voxels
width squares. This finally leads to the following
nyquist wave vector

=

knyquist = Wf ~ O.SMpC/hil

b Datasets dimensions and transforma-
tions

The raw datasets is composed of 50000 density
fields of size 643 voxels. And each voxel as a value
between [—1,235.2]. In order to make the DDPM
work we must normalize it between [—1, 1][cite] to
be in the range of a Gaussian distribution.
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Chapter 2

DDPM neural
Network

I Theoretical background

A diffusion model has two main process a for-
ward process and a reverse process. The forward
process consists of a series of steps, where each
datasets image is transformed into a more noisy
image. Given these noisy images, it’s not possible
directly to learn how to clean them, the backward
process consists in learning this cleanning step for
each image. This give the following mathematical
scheme :

Given a general distribution of the input im-
age : P we want to reach a N(0,I) distribution
given n steps of diffusion. This is done by ap-
plying the following transformation to the input
image xg :

x1 = xo\/ 1 — Bo + Poe

Tp = Tn—14/ 1- Bn—l + ﬁn—l6

Where € ~ N(0,I) and S; is in the range
[0.0001, 0.02]. Given this scheme it’s possible to
knoew exactly z; with zg. Defining : a; =1 — ;
and a; = H?:o a; we have :

xTr; = \/@ixo + \/1 — Eyie

Then the learning process consits of finding
the parameters of the backward process p(z;8),
which has the same functionnal form that the for-
ward process transformation (William Feller, Dif-
fusion process in one dimension). The transfor-
mation is the following :

Zi—1 = pp(z,t) + 1/ Xo(zi, t)e

. Then we can show that the parameter

B
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we can find the parameters of the backward pro-
cess just by knowing the noise level of the image,
this is learned with a U-net neural network com-
posed of a encoder and a decoder. By minimiza-
tion of the given loss :
£ = Elle — gl )] (2.1)
Then we can generate a new image by ap-
plying the backward process to a noise image
e ~ N(0,I). The network will then estimate the
noise level and apply the desired transformation

to the image. which results normally in a new
image with a realistic distribution of density.

IT Architecture

The architecture used in this diffusion model is a
simple encoder-decoder,

Table 2.1: layer dimensions

Layer shape
Decoder Input (1, 64, 64), 2 x (10, 64, 64)
Bottlneck (160, 1, 1), 2 x (160, 1, 1)
Decoder Output | (20, 64,64), 2 x (10, 64,64)
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Figure 2.1: Unet convolutional structure

IIT Testing

(a) Training image

(b) Generated image

Figure 2.2: Overview of the NN data

The training images presents some specificities,
we can clearly notice the presence of node like
structures, which results from a large aggregation
of galaxies. And as the primordial universe con-
verged to a filamentary-like structure, the training
image presents clear and noticeable filaments, so
called "cosmic-web". In the datasets these type of
structure are also recognizable, however one clear
observation is the mean value of the field which is
not correct at all, 2.2b, therefore we can just con-
clude as first sight that the distribution is range
relevant. We tried to understand why these dis-
tributions are shifted, the analysis of the forward
process of the noise diffusion model is correct and
leads as expected to a N(0.I) distribution. The
only explanation we found is a bias in the back-
ward process.

DDPM Noisy images 5%

2.0 DDPM Noisy images 10%
DDPM Noisy images 20%
DDPM Noisy images 25%
DDPM Noisy images 50%
DDPM Noisy images 75%

-
3}
T

2
z) DDPM Noisy images 100%
s M0, 1)
Z
= 1.0
8
5]
o]
S
j=
[=W
0.5
0.0 | -,e-aa R i S
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Figure 2.3: The forward process is correct the
noise level is progressively increasing, leading to
the desired distribution

1 Loss function

In section 2. If we have defined the loss function as
a simple difference between real noise value, and
predicted one (2.1), We can then study the con-
vergence of this loss function during the training
process. For each epoch, this gives the following
plot :
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Figure 2.4: The model has been trained for 20
epochs, here only progressing epochs has been
plot. This gives the oss of the Neural Network
training process, it’s exponentially decreasing as
expected. Which means that the model is learn-
ing the noise level of the images.

2 Physics likelihood

a Histograms
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Figure 2.5: Histogram of intensities for both

training and generated images, in red line the
training images and in blue the generated images

With 2.6, we can lay the emphasis on the dis-
tribution similarity between generated and train-
ing images, however we can notice that the mean
value of generated images is random in [-1, 1], as
we discussed in 2.II1. T’ve not find the cause of
this issue .... To get rid of this issue, we can
shift the generated images to the mean value of
the training images, this gives the following his-
tograms :
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Figure 2.6: Shifted images to the training images
mean value, the generated images present quite
the same distribution for reasonable pixel value.
However, the model tends to increase the void
around filaments (excess of small pixel value), and
to reduce the density of nodes (lack of high pixel
value). The model is clearly exaggerating the fila-
mentary structure making big voids around them
and reducing the density of nodes.

b Power spectrum

As we discussed before, the generated images are
not perfect, however besided the mean value is-
sue, the range of the distribution seems correct.
To study more precisely the characteristics of
the images, one common way in astronomy is to
study the power spectrum of the images. We can
suppose the power spectrum isotropic in space,
meaned over each y-voxel. The power spectrum
is defined as the fourier transform of I? wuth I
the pixel intensity. It describes the repartition in
wave vector of the power, which is not related to
with the mean value of the given image, which
is a good point to study the generated images.
Here we will study the normalized power spec-
trum, which is defined as : [cite]

with p(k) the power spectrum and k the wave vec-
tor.
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Figure 2.7: The blue fill is the standard deviation
of the generated datasets, and the red one corre-
sponds to the training image deviation. The grey
shaded domain delimits the k,yquist validity do-
main, due to the descretization of space. The psd
leads to the same conclusion, the generated im-
ages and the training image have the same power
spectrum, which strengthened the previous con-
clusion

def compute_isotropic_psd(img Iterable)

-> tuple:

Wi

compute_isotropic_psd
compute_isotropic_psd compute
isotropic power distribution of a
given image

Parameters

Iterable

_description_

Returns
tuple

tuple of Iterable (wave vector k,
power vector)

nun

delta_x = 250/64

k, p = welch(img, fs = 2 * np.pi /
delta_x, axis = 0, scaling= ’spectrum
>, nperseg = 64)

return k, np.mean(p, axis = 1)

3 Third order image analysis

The goal of this analysis is to isolate complex
structures such as filaments or nodes and to study
their statistical characteristics. For isolating such
structures, we used a graph approach, consider-
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ing every pixel as a graph node connected to its
nearest neighbors, this connection is removed if
the pixel values is smaller than a typical threshold
value fixed by the typical deviation of the gaussian
noise distribution of the primary universe. To find
this typical length we use Fiducial simulations at
z = 127, which gives after renormalization pro-
cess :

oo = 0.107

/ Eﬂ;‘ -
AV
] (A, 1

0.0 0.5 1.0
Intensity

(a) Graph construction of (b) Density distribution
the density field for z =127

Figure 2.8

(a) Analyzed image with (b) Generated image

many filament cluster

Figure 2.9

4 Non linear contrasting

a order of magnitude for contrasting pa-
rameter

To improve the contrast of previous images, a so-
lution has been proposed by |[cite], it consists of
the following transformation :

T
0T
r+a
Let’s consider the number C,; = ﬁ The in-

tersting point about this typical number is the

Jean Goudot, Madeline Casas, Andrea Combette
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following. If C,; < 1, the contrasting function is
too weak for the filament structure, whearas for
Cn; > 1 the contrasting function is too strong for
the noise. Therefore, we must choose a, such that
Cni ~ 1. The idea behind this is the following
if C,;y < 1 the derivative of the contrasting func-
tion at the typical length og is too big, it means
that we do not isolate the filamentary structure.
On the other hand if C,; > 1 the derivative of
the contrasting function at the typical length og
is too small, it means that we isolate the noise.

Figure 2.10: Transformations for multiple values
of a, the extreme loglike behaviour at low a is to-
tally deforming the physics matter field. which
should drastically lower the learning efficiency of
the NN. For relatively high a = 0.1 we do nor in-
crease a lot the filaments contrast as opposed to
medium a values, where the filamentary structure
is clearly distinguishable, without deforming the
physics field 2.16.

1
0.8 -
0.6 |- i
SN
0.4} i
0.2 i
0 oo '“”/mf;ijw“" 0% 030
| | O critical point |
O 0—0 @ filamentary limit 1
= 20
5.10-2 0.1 0.5 0.2 0.25

(a) Analyzed image with many
filament cluster
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Figure 2.12: In the Contrast transformations
where the parameter a is chosen to optimize the
contrats given the previous normalization process.
These functions allow us to shrink the inage do-
main after a critical value (2.11a), which should
be choosen accordingly to threshold used in the
clustering process. Indeed we wanna isolate the
filamentary structures from the noisy background,
which is not too small, otherwise we will isolate
the noise, and not too big, otherwise we will not
isolate the filaments. Given 2.11b we can observe
the migration of intensity distribution for low a, it
means that a lot of noisy pixel have been strenght-
ened, which is not what we want. For relatively
high a ~ 0.3 we do ont isoliate the filaments any-
more, because the crticial intensity is much higher

b Contrast trained model

b.1 Loss function
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Figure 2.13: Here is plotted the different losses
for the training process, for multiple value of the
contrasting parameter a. We can observe that
the lowest value of the loss function is ibtained
for a = 0, i.e for no contrasting transformation,
which can be opposed to the decision of [|, . How-
ever we will push forward our analysis, and try to
see, if the contrasting function helps in creating a
more realistic field

b.2 1st order distribution of pixels This
first order anaysis enables us to verify the pixel
distriibution range for all the models trained with
different contrast parameters.
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Figure 2.14: Note that as discussed in the fig.2.3
the mean value of the generated images is not the
same as the training images, to study the distri-
bution we renormalized the mean to fit the train-
ing images mean for each generated images. This
leads to the former figure. We can note that, all
the generated images have poor results for low
pixel value, however the non contrasted generated

1
1072
pixel value

images and the contrasted images with a = 0.05
have a strong similarities with the original distri-

bution for all pixel values > le™3, which is a good

point.

b.3 2nd oder spectrum analysis
ond order analysis, is a more precise analysis
based on spatial frequencies redondency.

10° 10!

Variance of structures

Figure 2.16: The clustering analysis on inverse
transform images, dig out som intersesting re-
sults, all the contrast trained model are unable
to have a correct rendering of structures, indeed,
it seems that contrast based model exagerate the
filamentary structure to minize their loss, which
seems to be reasonnable for contrasted images,
but not for inverse transform images.

IV  Conclusion

In this study, we implemented a Diffusion Deep
Probabilistic Model (DDPM) neural network for

image denoising.
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Figure 2.15: The spectrum analysis leads to the
same conclusion, indeed it seems that only the
non contrasted images and the contrasted images
with @ = 0.05 have a range compatible power
spectrum with trainig images. Note that only the
high std is plotted for the generated images be-
cause the low std is too small to be plotted.

b.4 3rd order -clustering analysis
third order analysys is the optimal way to evalu-
ate the model, it allows us to have deeper insights
on the generated images structures.

k - [h/Gpcl

a reverse process.
was presented, emphasizing the transformation
applied at each step to achieve a target distribu-
tion. The architecture of the neural network is a
simple encoder-decoder structure. The generated
images, however, exhibited some discrepancies in
terms of mean value and distribution.

The theoretical foundation of

the model involves a forward diffusion process and

The mathematical formulation

Further

analyses involved studying the power spectrum,
histogram distributions, and third-order image
3 analysis using clustering techniques. The power
spectrum analysis showed that the generated im-
ages and training images had similar power spec-
tra, strengthening the conclusion that the model

learned the noise level effectively. Additionally, a

contrasting transformation was introduced to im-
prove contrast in the generated images. Different
values of the contrasting parameter ’a’ were ex-
plored, and it was observed that for certain values,
the contrasted images exhibited similarities to the
original distribution of training images. However,
the clustering analysis on inverse-transformed im-

ages revealed that contrast-based models tended
to exaggerate filamentary structures. In conclu-

The

sion, the DDPM neural network, while showing
promising results in learning matter density field
distributions, still requires further improvements
to achieve a more realistic rendering of structures.
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