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Cautionary note : This paper is a report for an internship, it deals with machine learning
approach to tackle spike-sorting problems in neurosciences. It is not intended to be a com-
plete and rigorous study of the subject. The reader is invited to refer to the references for
further details. It has been made by a Master Student, with some background in physics
and mathematics, but no prior knowledge of the subject. It is therefore not intended to be
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Introduction

derstanding the intricate workings of the brain. Neurons communicate

through electrical impulses, or spikes, which necessitate precise detec-
tion and classification for comprehensive analysis. These communications are
driven by ionic transport between synapses (specific places between dendrites
and axon two main components of the neural transmissions).

THE study of neural activity at the single-cell level is fundamental to un-

nucleus

/

Figure 1.1: Neuron anatomy with different components. Neurons are con-
nected each others via axon and dendrites, the neural signal is electrical and
is due to the polarization of the neuron membrane.

Understanding which neurons are excited at a given moment allows us to de-
cipher, to a certain extent, the language of our brain. The state of a neuron
is defined by the potential of the neuron membrane, and when a neuron is
excited, it undergoes what is known as an action potential. The propagation
of these action potentials serves as a fundamental basis for comprehending
the intricate nature of neural activity. In our pursuit to detect and categorize
these elusive spikes, we typically employ multiple electrode arrays in tan-
dem with sophisticated classification methods. The classification of neuronal
signals, specifically action potentials, constitutes a pivotal domain within neu-
roscience. It facilitates real-time analysis of cerebral information, providing
insights into the motor actions envisioned by the subject. The automation
of classification tasks involves the utilization of diverse algorithms, prompt-
ing the question of which algorithm is most efficient for classifying neuronal
signals. The answer is context-dependent; it varies based on the specifics of
the study. To enhance our results, envisioning the combination of multiple
algorithms for improved classification becomes essential. This is precisely the
objective of the Lussac project, which endeavors to amalgamate results from
diverse algorithms [3].
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Figure 1.2: Spikesorting analysis Principles of neurons. The local field poten-
tial contains multiple neuron signals, the goal of the spilesorting algorithm
is to isolate each signal and to attribute each spikes in the local field to a
specific neuron. There is many methods to do so. Lussac goal is to deal with
multiple of these algorithms to extract the best from each.

Lussac[4] is a pipeline used for merging and post-processing multiple spike-
sorting analyses. The goal of this first part is to optimize the decision process,
when lussac deals with multiple sorted neurons or analyses, this study is
mainly a graph optimization problem, with bidirectional link between nodes
(nodes are neurons in Lussac study, that are connected each other by multiple
metrics). Previously, lussac sortings presented some issues with the decision
process leading episodically to large neuron clusters ~ 30. It means that
Lussac is quite sensible to neuron doubloons inside each analysis, to deal
with this issue we propose a more traditional approach to the problem, using
clustering algorithm outlier detection methods and support vector machine
algorithm. Previous approach involves testing various methods to identify the
most suitable one for each detected neuron using multiple metrics, leading
to conclusive outcomes. Another strategy involves the utilization of a ma-
chine learning approach to delineate the optimal boundaries between different
clusters of neurons and to identify the highest-quality neurons within each
cluster. The initial segment of this report is dedicated to the examination of
neuron classification within specific clusters, utilizing multiple metrics. Each
spikesorting algorithm employed by Lussac provides information regarding the
detected neurons, necessitating the development of a methodology to integrate
these insights for each spikesorting analysis. The subsequent section focuses
on evaluating the quality of neurons within each cluster using diverse metrics,
ultimately isolating the premier neurons in each cluster. Both steps, when
combined, provide a comprehensive overview of the quality of the neuron sig-
nals, and allows us to build a stronger and efficient spikesorting analysis.
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2

Lussac sorting: Clustering
every group of neurons

To Identify which neurons are identical be-
tween each analysis, and to process each clus-
ter of the same real neuron, we first need
to deal with relations between nodes of the
Lussac graph. To do so, multiple clustering
methods can be unearthed applied to multi-
ple type of graph. For example we can clus-
ter neurons together if their connections in-
side the graph verified some specific proper-
ties, like the similarity between both neurons
... Or we can test clether data structures.

I Clustering on low dimen-

sional space

1 Graph Space

Given some relations between two nodes, one
want to know if this relation is good or not.
To do so, we can consider using classification
regression algorithm to determined if a rela-
tion is good or not. This approach is quite
simple and general and allows us to know
given a fitted model and a new relation if
the new relation is good or not. First we
have to cluster the analyses, neurons coding
for the same real neuron. let’s consider the
low dimensional space :

{(p117p127p§>7p1 € [[Oa NQ]]}

where N is the number of neurons, and p°
the i-th components of the given graph edge.
Two species clustering is used to determine
the class of each edge relation. Here the three
components of the edge are the similarity, the
template diff and the correlation diff.

2 Clustering Metrics
a Similarity

The similarity of two neurons n; and n;, let’s
give us V;; the number of coinciding spikes
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between n; and n; and N; and N; the num-
ber of spikes of n; and n; respectively. Then
we define the similarity as follows :

: Nij
S ) = (N )
iy 4Vj

b Correlogram difference

The correlogram difference compares the two
neurons autocorellogram, lets’consider both
as : I'y and I'y; and the cross-correlogram as
F12.

Figure 2.1: Correlogram
difference overview

The following parameters wi,ws, V1,72 are
used to determine the most relevant range
of the correlogram. =; is defined as the first
annulation of the second derivative of I';. Fi-
nally the correlogram difference is computed
wih 'y, 'y, 'y restricted to [y1, 7).

T — Ty

wj—wi

Corr; =

Then we take a ponderated mean of the cor-
relation difference of both neurons.

¢ Template difference

For the template difference, it’s just a sim-
ple euclidean distance between the two tem-
plates, devided by the sum of the absolute
value of the two templates. The so called
template, refers to the waveform of the ex-
tracted neuron from the raw signal (fig 1.2)

d Asymmetric similarity

Let’s consider two spiking neurons, n; and
ne, we define the asymmetric similarity as
follows :
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Nij
N;

sim(n;, n;) =

Hence, even if a neuron is learned lately by
the algorithm, it will be able to be classified
as a good neuron, if it has a lot of coinciding
spikes with a neuron already learned.

e Cross-contamination of neurons

The contamination [6] gives a corrected num-
ber of violations metrics, it’s caculated using
a censure time. Indeed spike sorters are not
able to detect spikes that are too close to each
other. A way of correct the rate of number
of violation is to not consider a specific time
window around each spike. This time win-
dow is called the censure time.

3 Unsupervised Clustering

Unsupervised clustering is a method of clus-
tering that does not require the user to spec-
ify the number of clusters to be generated.
Instead, the algorithm itself will determine
the optimal number of clusters based on the
data. For this tasks we will use a KMEANS
algorithm specifying 2 classes, to isolate good
relations. Kmeans is a method of vector
quantization, originally from signal process-
ing, that aims to partition n observations
into k clusters in which each observation be-
longs to the cluster with the nearest mean
(cluster centers or cluster centroid), serving
as a prototype of the cluster.
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Figure 2.2: We omit the dependence over the
template difference for vizualizations. Big cir-
cles are the ground truth label, red one are
known good relations between neurons (i.e they
are in the same cluster, and blue one are bad
ones. The results of the unsupervised clustering
is represented by the little blue and red circle,
the red one are the good relations, and the blue
one are the bad ones. The unsupervised cluster-
ing is not able to separate the data in a good
way. )

Despite the fact that Kmeans algorithm are
robust and highly generalizable. The clus-
tering is far from being efficient, indeed due
to the large spread of data in the template
diff the clustering is not able to separate the
data in a good way for the similarity axis.
And the continuum of points in the (similar-
ity, temp diff) plane prevents us from a good
discrimination. To solve this issue we could
have tweaked the sample weighting parame-
ter of the KMeans algorithm as we will fur-
ther. But to get more control on the learning
process of the algorithm, we can use a super-
vised clustering algorithm, which will be able
to separate the data in a more efficient way.

4 Supervised Clustering

Here the idea is to first use a classification
methods to first determine if the edge is good
or not, given the edge relation for each node’s
edges. Then we can create clusters, using the
validity of the edge’s relations. To do so we
use a support vector machine classifier, which
is a supervised learning model, i.e. it requires
a training set of labeled data to learn from.
The goal of the SVM is to find the insights of
this algorithm will be discussed in the next
part.

a Support Vector Machine Classifier

a.l Principle The support vector ma-
chine [1] classifier is a supervised learning
algorithm that can be used for both classi-
fication or regression challenges. However, it
is mostly used in classification problems. In
this algorithm, we plot each data item as a
point in n-dimensional space (where n is the
number of features you have) with the value
of each feature being the value of a particular
coordinate. Then, we perform classification
by finding the hyper-plane that differentiate
the two classes very well. This hyper-plane
is called as the margin. The SVM classifier
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finds the optimal margin.

This method allows us to tackled non-
linearly separable data, by introducing the
kernel trick, which consists in mapping the
data into a higher dimensional space, where
the data will be linearly separable. For ex-
ample, we can use a radial basis function ker-
nel, to fit Gaussian distribution values to the
data.

K (i, 2;) = exp(—||z; — ;][

a.2 Application Here the SVM will be
simply parametrized by a linear kernel and
applied on the lussac graph relations to iso-
late neurons clusters.
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Figure 2.3: Neurons relations distributions for
identical clusters, like we said before, the dis-
tributions for the correlogram and the template
are quite similar, as opposed to the similarity
distribution. Hence, the goal is to separate these
3 distribution in an optimal way, this is why we
will limit our visualizations to the similarity and
the template difference.
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Figure 2.4: Decision Function for the given
SVM, the correlation dependence is omitted due
to its weak impact on the decision boundaries.
Here the SVM is able to separate the data in
a good way, we reach a score of 0.9997 for the
relation’s classification, we can see that good re-
lations colored in red are mostly to the right of
the boundary and bad (in blue) relations to the
left. However this high score must be taken with
a grain of salt, indeed there is a lot of bad rela-
tions inside the data, and their classification is
not really relevant, since this it is quite obvious
that they don’t belong to the same neuron. The
introduction of a relative metrics should solve
this issue and will be introduced further.
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Figure 2.5: Here we can see the length histogram
of the clusters, the length of the clusters is the
number of neurons inside this latter. In blue
the predicted cluster length and in red the true
one. We can see that, these two distributions are
quite similar, which is a good sign, one can lays
the emphasis on the fact that predicted clusters
tend to have smaller size, which is quite relevant
since it eliminates the risk of having a large clus-
ter containing multiple neurons, creating really
small clusters of bad units.
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5 Clustering Efficiency

Hence the labelling is different from the Lus-
sac, one have to define another score method
to quantify the clustering quality. We pro-
pose the following formula :

(G 0 Gy)

NFRe

N
SCOI"G(Ypred, Ytrue) — —
Z max (#GE, #Gre)

with Gy the k-th subset of neighbors index
deduced from the clustering G} method
and lussac analyses for Gi™°. Thanks to this
metrics we are able to avoid the labelling
problem, and we can evaluate the clustering
quality in a more efficient way. It satisfies
the following properties :

score(Y,Y) =1
score(Y,0) =0
score(Yy,Ys) = score(Ys, Y1)

II Clustering on high dimen-
sional space

Next we will just keep the similarity, tem-
plate difference, correlogram difference met-
rics to simplify the problem. The features
space is then of dimension 3. Let’s consider
the high dimensional space :

{pl,i,5 € [0,N] x [0,3N]}

where N is the number of neurons, and p’
the i-th components of the given graph edge.
Two species clustering is used to determine
the class of each edge relation. Hence, the
dataset has the following shape :

11,0,0] ...
... [1,00 ...
... [1,0,0|

3N

In this representation we do not consider the
link validity but how the neuron are con-
nected together, this point of view increase
drastically dimensions, but it allows us to
discriminate the data in a much more com-
fortable way. The idea behind this repre-
sentation is that, to connected neurons on
the graph should have the same edges co-
ordinates in this space. Because they share
the same properties (similarity, template diff,
corr diff) The unsupervised clustering of this

February 7, 2024

dataset provides npeq clusters. We use the
same metrics as before to evaluate the clus-
tering quality. Then when the model is fit-
ted, we can use it to predict is a new node in-
side the Lussac graph is inside another clus-
ter.

1 Various unsupervised clustering al-
gorithms

o Affinity propagation AffinityPropa-
gation creates clusters by sending mes-
sages between pairs of samples until
convergence. A dataset is then de-
scribed using a small number of ex-
emplars, which are identified as those
most representative of other samples.
The messages sent between pairs rep-
resent the suitability for one sample to
be the exemplar of the other, which is
updated in response to the values from
other pairs. This updating happens
iteratively until convergence, at which
point the final exemplars are chosen,
and hence the final clustering is given.

« HDBSCAN Hierarchical Density-
Based Spatial Clustering of Applica-
tions with Noise. Performs DBSCAN
over varying epsilon values and inte-
grates the result to find a clustering
that gives the best stability over ep-
silon. This allows HDBSCAN to find
clusters of varying densities (unlike
DBSCAN), and be more robust to
parameter selection

2 Results

a Affinity Propagation Results

The vizualizations of the created graphs are
omitted due to the large number of clusters
created by the algorithm. The best score ob-
tained after a simple gridsearch relative to
the clustering is 0.687, which is quite low,
and cannot be compared to the previous clus-
tering methods.
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Figure 2.6: Here we can see the main reasons of
the low clustering score. It’s mainly due to mul-
tiple single clusters, which were normally from
medium size clusters, which is not really rele-
vant since we want to ge rid of big clusters.

b HDBSCAN Results

For the HDBSCAN algorithm, we obtain a
score of 0.78, which is too low compared with
the previous results, the conclusion are the
same than for the affinity propagation al-
gorithm, the main reason of the low score
is the presence of multiple single clusters,
which were normally from medium size clus-
ters, which is not really relevant since we
want to ge rid of big clusters.

3

Nodes clustering

1 Node Space

The second clustering is based on the study
of the space of neurons quality metrics. The
goal of this process is to eliminate bad neu-
rons in the previously defined clusters.

2 Different Methods

a Metrics Overview

e rb contamination : The contamina-
tion gives a corrected number of vio-
lations metrics, indeed it’s calculated
using a censure time. Indeed, spike
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sorters are not able to detect spikes that
are too close to each other. A way of
correct the rate of number of violation
is to not consider a specific time window
around each spike. This time window is
called the censure time.

SNR : The SNR is the ratio between
the mean of the spike amplitude and the
standard deviation of the noise. The
SNR is a measure of the quality of the
spike detection. A high SNR means
that the spike detection is good.

presence ratio : The presence ratio is
the ratio between the number of spikes
detected and the number of spikes ex-
pected. A high presence ratio means
that the spike detection is good.

firing rate : The firing rate is the num-
ber of spikes detected divided by the
duration of the recording. A high firing
rate means that the spike detection is
good.

synchrony : The synchrony is the ra-
tio between the number of coinciding
spikes and the number of spikes de-
tected. A high synchrony means that
the spike detection is good.

sd ratio : The sd ratio is the ratio
between the standard deviation of the
spike amplitude and the standard de-
viation of the noise. A high sd ratio
means that the spike detection is good.

quality score metrics : The quality
metrics is score taking into account the
contamination and the number of spikes
(firing rate). It is defined as following :

S=N(1-(k+1)0)

witth N the number of spikes, C' the
contamination and k a constant. Gen-
erally we take £ = 1 for minimizing the
accuracy, but one could argue that it’s
not the best choice, indeed a false posi-
tive has a stronger impact on the spike
sorting quality, so we could take k = 2.5
to accentuate the dependence of false
positive on the score. Indeed, the for-
mer formula leads to :

S=N-—-FN-—-FkFP
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To have deeper insigths, we sould explore
the correlations between the different met-
rics, one common way in machine learning
is to use the Person correlation coefficient,
which is defined as follows :

with cov(X,Y) the covariance between X
and Y and ox and oy the standard deviation
of X and Y respectively. It’s really usefull to
determinate a dependancy between metrics,
and to isolae indepedant ones. Indeed if the
pearson correlations close to 0, then the met-
rics are independant, the goal of this is to find
the most relevant metrics for the clustering.
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Figure 3.1: Correlation matrix of the different
metrics, we can see that the firing rate and the
presence ratio are highly correlated, hence we
can drop one of them. The sd ratio and the
SNR are also highly correlated, we can drop one
of them. The synchrony and the contamination
are also highly correlated, we can drop one of
them.

Dropping the cluster dependence allows us
to use all the nodes for the global clustering,
which should make our predictions more re-
liable. However some metrics are theorically
cluster dependant, some we must drop them,
there are the following : (firing rate, sd ra-
tio, quality core metrics,) For the clustering
we use weighted samples for getting rid of
the unbalanced dataset problem. Indeed, if
we want to isolate the best neuron for each
cluster, we have to diminich the impact of
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other good neurons in the clustering process.
To do so we first use the following weighting
function, of the form :

x—maXC/C’> N 112

fla) = lnm( - 5

Weighting Function

1] . |
> 0.5 a
0, .
|
max,
x

Figure 3.2: Weighting function used for the clus-
tering, the goal is to have a strong impact on the
data that are close to the maximum of the clus-
ter, and a weak impact on the data that are far
from the maximum of the cluster.

3 Clustering on every nodes

Here we are clustering on every nodes, in-
dependantly from their clusters, one strong
limitations is that we cannot used metrics
that are neuron-dependant, indeed each clus-
ter should encode one single neuron, which
has some specific property. Hence, we use
just the 3 following metrics : snr, contami-
nation, presence ratio :

contamination
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10 g= T m 1
& ; E
8 &g CE o s
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decision function

Figure 3.3: The data is impossible to separate
into 2 clusters : one for good neurons and the
other for the bad ones. Hence the SVM is clearly
overfitting the data.
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Dropping the presence ratio which appear to
be constant for a majority of the nodes, we
obtain the following results :

contamination
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Figure 3.4: Here the results leads us to the same
conclusion as before.

It’s clear that there is a necessity to intro-
duce relative metrics, to have clusters inde-
pendent results. How data can be relative
to clusters, one easy way to solve this prob-
lem is to renormalize the parameter by the
mean and the std of the cluster. Given the
following formula :

bi — p
o

with i the index of the feature and p, i1, o the
parameter, the mean and the standard de-
viation for each cluster. Besides the needs
to have constant spreading of the data ap-
pears,indeed here we are studying the 2d
case, but the introduction of new parameter
should cause some issues without this renor-
malization. This gives the following renor-
malized distribution.

contamination

snr

Figure 3.5: Here we introduce the distance
weighting defined above. In black, the so-called
bad neurons, and in red the best neuron (de-
fined by their accuracy over the ground truth
neuron) for each cluster. It seems that, thanks
to the renormalization, the data can be sepa-
rated in a good way.
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4 Clustering with relative metrics

a Support Vector Machine Classifier

However, we can’t apply directly this classi-
fier to the clustering problem, indeed we have
a strong unbalanced dataset, between the
two classes, hence we have rectification co-
efficient for the weight of each class, to avoid
a huge influence of the majority class in the
clustering. To sum up we have two weighting
coefficient, one for the distance and one for
the class. The coefficient introduced are (0.5,
5) respectively for the majority class and for
the minority class.

contamination
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LT T T T T 1T T T 1
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Figure 3.6: On this clustering thanks to the
renormalization we got more homogenous sep-
aration (solid black line stands for place where
the algorithm tends to label points as good neu-
rons and dashed line where the algorithm clas-
sifies the neurons as bad), though the clustering
method has overfited the data, hence we must
try to choose the optimal I" Kernel coefficient in
order to have a fixed width of cluster. And to
try different penalty parameter to get rid, of the
noisy data influence inside the clusters of rele-
vant neurons

Next we perform a grid search to find the op-
timal gamma and C parameters, this leads to
the following results
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Figure 3.7: Here it appears that the optimal
parameters are high gamma and high C, how-
ever, let’s note that this leads to high overfitting,
hence we should try to find the optimal param-
eters, considering that a generalization will lead
to a relatively smooth separtaion line : Indeed,
let’s check the shape of the level 0 of the decision

February 7, 2024

For the following figures we projected the
classifier on the planes of interests for all the
metrics. This gives a quick overview of the
classifier behaviour in high dimensions. Note
that without any projections, the classifiers
will have better insights of the data, leading
to better results, though we cannot plot 7
dimensions data.

function.

Figure 3.8: Here we try to classify the data, using the optimal parameter used for the grid-search,
however, it appears, as expected, that the boundary is totally messing. Hence, we must choose small
I' as studied before to keep, a relatively smooth boundary. Behind, this required smooth boundaries
is the generalization issue, and to have simple rules to know if the neuron is good or not. Even if this
much more sophisticated boundaries are probably, encoding more simple boundaries inside. To do so
we will fix the I parameter to an arbitrary low number and play with the penalty parameter in order
to maximize the clustering score of the method.

11 Andrea Combette
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Figure 3.9: Here we choose I' = 0.03 and C' =1
(i.e. no penalty), we can see that the clustering
is more relevant, but we still have some noisy
data inside the clusters, that we can get rid of
playing with the penalty parameter. However,
one can notice that with the base score func-
tion, as we discretized the label, we will have
some really low score (around 0.4), the need to
introduce a new metrics score appears. We pro-
pose to use the same weighting as before with a
strengthened impact of critically low accuracy,
introducing relative accuracy of the cluster into
the computation of the score.

ooooooooooooi
[ o
o
OOO 1tLo

Figure 3.10: Score maximization using v = .003
of the coefficient parameter of the weighting
function and the penalty paramter of the fiting
process, However let’s denote the following prop-
erties of support vector machine, the C param-
eter determinates how smooth is the speration
curve, for high C the model try to classify all the
data correctly, but it can lead to overfitting, for
low C the model try to find the largest margin
possible, but it can lead to underfitting. Hence
we should try to find the optimal C parameter,
considering that a generalization will lead to a
relatively smooth separtaion line :

Next we perform a grid search to find the
optimal weighting coefficient and C' param-
eters, this leads to the following choice :
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I' =0.03, ¢ =5, W, =5 for the weight-
ing coefficient. After fitting the model with
these parameters we reached a score of .84,
which is quite good.

b Naive Bayes Classifier

b.1 Principle Naive Bayes classifiers are
a family of simple "probabilistic classifiers"
[5] based on applying Bayes’ theorem with
strong (naive) independence assumptions be-
tween the features. Given a class variable y
and a dependent feature vector x; through
xn, Bayes’ theorem states the following rela-
tionship:

P(y)P(xy, ..
P(Il, ..

- Tnly)
 Tn)

P(y|ay, ...

wrn) -

b.2 Gaussian Naive Bayes In Gaussian
Naive Bayes, continuous values associated
with each feature are assumed to be dis-
tributed according to a Gaussian distribu-
tion. When we apply the algortithm to our
dataset, we obtain the following results :

— . . : —— 7 1.05
“F g 1 |4 0.90
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] -4 0.60 B
0 - 1 0.45 é
-2 - 4 Ho.30
N {4015
- . . - , — 0.00
-4 -2 0 2 4
Figure 3.11: For the 2D clustering on syn-

chrony and SNR we obtained quite good sep-
aration line between both clusters of good and
bad neurons. This simple separation ilne, has
been obtained introducing the same weighting
methods used for SVM, except for the class
weighting. However for the score evaluation, we
implemented this weighting to get rid of the over
influence of bad neurons.

To have deeper insights on the multidimen-
sional clustering we proposed to use the same
visualizations as before, with the projections
on all metrics planes. This leads to the fol-
lowing :
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Figure 3.12: Here we plot, the separation line of both clusters, in orange good neurons and in blue bad
ones. The diagonal shows the distribution of both types of neuron. One can notice, that for some di-
mensions the clustering is inefficient. However, results are quite intersesting and the multidimensional
analysis leads to a global score of 0.87, given the weighting metrics.

¢ Quadratic Discriminant Analysis

c.1 Principle Quadratic  Discriminant
Analysis (QDA) [2] is a classification al-
gorithm that assumes that the probability
density function of the features given the
class follows a Gaussian distribution. QDA
is a simple extension of LDA to a non-linear
decision boundary.QDA can be derived from
simple probabilistic models which model the
class conditional distribution of the data for
each class. Predictions can then be obtained
by using Bayes’ rule, for each training sample
re€RYand class k € {1,..., K}:

13

P(zly=k)P(y = k)
P(z)
_ Py =k)P(y = k)
S P(Xly=0)Py=1)
The idea is then to select the class k which
maximizes this posterior probability.
More specifically,for quadratic discriminant

analysis, P(X|y = k) is modeled as a multi-
variate Gaussian distribution with density:

P(Xly =k) =

Plzly =k) = m exp(—%(ac — i)’

(Xk: — 1z — )

Andrea Combette



ENS

Here o}, stands for the covariance matrix, the
exponential term is the Mahalanobis distance
between z and . And d is the umber of fea-
tures. The only difference with LDA (linear
discriminant analysis) is that we do not as-
sume that the covariance matrix is the same
for all classes.

c.2 Results Discriminant Analysis
When we apply the algortithm to our
dataset, we obtained the following results
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Figure 3.13: The Discriminant analysis leads
quite to the same results as for the Bayesian
approach (for synchrony and SNR), which
was intended, however one can show that the
boundaries are a little less strict, and can be
expanded a little beyond the Bayesian classi-
fier ones. Whereas, the weighting is exactly the
same, even for the score function.
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Figure 3.14: For the multidimensional projections study we got the following results : The separation
line between both clusters, is indeed larger with the quadratic determinant analysis than for Bayesian
analysis. Note that the results seems also quite relevant, since the global analysis, leads to a score of

0.88.

d Comparison

The three methods for the node’s classifica-
tion seem to be working. One can say that we
must take the methods with the best score, to
evaluate if a neuron is good or not, we could
aolso argue that we must choose the method
with the more restrictive decision line, in or-
der to increase the chance to have better neu-
rons. But in this case, we will miss some neu-
rons, which will lead to false negative in the
analysis. In fact it’s not really important to
classify a bad neurons which has good met-
rics as good, since in all cases we must take
the best neurons in the cluster. To do so,
we propose the following method : When we
classify a cluster of neurons, if there are good
neurons, we take the nearest neuron from
the centroid of the good neuron distribution
(normalized).
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Figure 3.15: Centroid method for choosing the
best neurons in the case there is many.

The best score methods, with quite large
boundaries is the quadratic determinant
analysis, this is why it’s the more appropriate
to tackle this classification problem.

Conclusion

In this comprehensive study, we have ex-
plored various clustering and classification
methodologies for the analysis of neuronal
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data, particularly focusing on spike sorting
in neuroscience. The first part, focused on
the clustering of same detected neurons my
multiple analysis, the second part unearthed
the complexity of choosing the best analy-
sis, to provide the best data. Our investi-
gation encompassed unsupervised clustering
using KMEANS and hierarchical clustering
algorithms, revealing the limitations of these
methods in efficiently separating data due to
the inherent complexity and spread of the
feature space.

To address the shortcomings observed in un-
supervised clustering, we introduced super-
vised approaches, leveraging Support Vec-
tor Machine (SVM), Naive Bayes Classi-
fier, and Quadratic Discriminant Analysis.
The SVM demonstrated robustness and gen-
eralizability, effectively discerning between
good and bad neuronal relations. Notably,
the introduction of relative metrics and a
weighted scoring system facilitated a more
nuanced evaluation, offering insights into the
clustering quality. The Quadratic Discrimi-
nant Analysis emerged as the most promis-
ing method, achieving a high clustering score
and demonstrating stringent decision bound-
aries. We proposed a practical approach for
selecting the best neurons within a cluster,
prioritizing those nearest to the centroid of
the good neuron distribution.

Our findings not only shed light on the chal-
lenges associated with traditional clustering
methods in the context of spike sorting but
also present a novel and effective framework
for improved classification. The integration
of sophisticated machine learning techniques,
coupled with thoughtful metric considera-
tions, provides a promising avenue for ad-
vancing the accuracy and efficiency of neuron
categorization.

This study contributes valuable insights into
the realm of neuroscience and spike sorting,
offering a methodological foundation for fu-
ture research aimed at enhancing the under-
standing and analysis of neuronal data. The
proposed approaches hold significant poten-
tial for application in real-world scenarios,
paving the way for more reliable and precise
spike sorting methodologies in neuroscientific
studies.
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