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Cautionary note : This paper is a report on numerical methods for the shallow water
equations and gravity waves. It is not intended to be a complete and rigorous study of
the subject. The reader is invited to refer to the references for further details. It has been
made by a Master Student, with some background in physics and mathematics, but no prior
knowledge of the subject. It is therefore not intended to be a reference for experts in the
field.
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Abstract

Shallow water equations, fundamental in fluid dynamics, offer
a concise framework for studying the dynamics of a fluid layer
with constant depth. They serve as a versatile tool to model
various natural phenomena, including tsunami propagation,

river flow, tidal patterns, and atmospheric behaviors. Derived from the
more intricate Navier-Stokes equations, the shallow water equations as-
sume a thin fluid layer compared to its horizontal extent, allowing the
neglect of the vertical velocity component and approximating pressure as
hydrostatic in the vertical direction. This simplification enables integra-
tion over the vertical dimension, facilitating a more tractable analysis.
The primary focus of this report lies in the exploration of shallow water
equations across diverse domains, with a specific emphasis on under-
standing the behavior of solutions, notably the emergence of Poincaré
waves. Poincaré waves represent a specific subset of solutions charac-
terized by their frictionless and Coriolis-dependent nature. Within this
broader context, attention will be directed towards more specialized solu-
tions, including Rossby, Kelvin, and gravity-Rossby mixed waves. These
distinctive waves hold significant relevance in oceanography, where they
play a pivotal role in the formation of oceanic currents, exemplified by the
Gulf Stream. Additionally, they contribute to the genesis of the El Niño
phenomenon, a climatic event with profound implications for Earth’s cli-
mate. Delving deeper into the analysis, a specific subset of solutions
within the Poincaré space emerges as solitons. These solitons, charac-
terized by their lack of damping effects, serve as a valuable metric for
evaluating the efficiency of numerical integration schemes. Notably, any
observed damping effects in solitons can be attributed solely to numerical
errors, making them a reliable benchmark for assessing the accuracy of
the chosen numerical integration approach.
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1

Theoretical Background

I Shallow water equations

The shallow water equations considering small per-
turbations of speed and height regarding the mean

field, and getting rid of the friction term is the follow-
ing:∂tu + U∂xu + V ∂yu − fv = −g∂xh

∂tv + U∂xv + V ∂yv + fu = −g∂yh
∂th + U∂x(h) + V ∂y(V ) + a0(∂xu + ∂yv) = 0

With U and V the mean velocity in respective x and
y direction verifying by the following equations:{

u = U + u′

v = V + v′

h is the height of the fluid perturbation, and a0 is the
mean depth of the fluid layer. f is the Coriolis param-
eter given by f = 2Ω sin(θ), with Ω the rotation speed
of earth and θ the co-latitude, finally g is the gravity
acceleration. In the following we will omit the prime
notation for the perturbations of velocity./media/andrea/Crucial X6/Master/Numerical Methods/project/CR/figure/height_def.pdf

a0 + h1

a0 + h2

a0

x
Figure 1.1: Parametrisation of the fluid layer, as well as
the height of the perturbation, note that h is not define
positive

Then this give us in the reference frame of the wave
propagation (U, V ):∂tu − fv = −g∂xh

∂tv + fu = −g∂yh
∂th + a0(∂xu + ∂yv) = 0

(1.1)

Solutions of these equations are called Poincarré wave
[4], these waves are dispersive since the phase speed
cΦ depends normally on the wave vector k. Nonethe-
less, these equations are not always easily linearized.
Indeed, the Coriolis term is not constant on the do-
main of study, this brings some non-linearity in the
equations. In the following we will study the behav-
ior of these equations on different domains, and try
to find some analytical solutions to them. Note that

this non-linearity in ?? can be used to compensate
the dispersion of the waves. Which will leads to KDV
or MKDV equations when non-linearity ∼ dispersion,
which are used to model one crest unimontane solitons
[1]. The case of high non-linearity wave is described
by the One dimensional advection equation, in
this case the phase velocity of the wave is constant.
Finally, strong dispersive waves are described by the
NLS equation.

II Equatorial study

In this section we will study the behavior of the shal-
low water equations near the equator. This domain
is of particular interest since the Coriolis term may
be simplified to linearize the differential equations,
to find analytical solutions to them. For example,
we can unearth some Kelvin wave solution, which
are called Kelvin equatorial waves [3], deriving from
coastal kelvin wave. These atmospheric waves can
propagate eastward, with a given phase speed cKelvin

Φ ,
though this wave type is non-dispersive due to high
non-linearity, which leads to a constant phase speed
cKelvin

ϕ = √
ga. Furthermore, another type of solution

can be found, these are called equatorial Rossby waves
and propagate westward with a phase speed cRossby

Φ .
We will see Rossby waves can be weakly or strongly
dispersive depending on their size (i.e. on the zonal
wave number)

Figure 1.2: Earth view of the equatorial domain, with the
different waves propagating, the left one is a Rossby soliton
and the right one is a Kelvin , note that the phase speed of
the Kelvin wave is much higher than the one of the Rossby
wave.

1 Beta plane approximation

The Beta plane approximation consists of lineariz-
ing the Coriolis term in the shallow water equations.
This approximation is valid for small latitudes, in the
case of large latitudes this approximation can be re-
placed by the f plane approximation, discussed bel-
low. The Beta plane approximation is given by the
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following equation:

f = βy

This allows us to simplify the shallow water equa-
tions ?? defining the following scales parameter and
the Lamb parameter

E = β2a4

ga0

Where a is the radius of the earth and a0 the homoge-
nous fluid depth.

Characteristic scales
L T ϵ τ ξ

a
E1/4

E1/4

2Ω
(2Ωa)2

ga0
ns ϵ1/2(x − ct) ϵ3/2t

Assuming that the development of the u, v and h are
of the following form:

u = ϵ(u0 + ϵu1 + ϵ2u2 + . . . )
v = ϵ3/2(v0 + ϵv1 + ϵ2v2 + . . . )
h = ϵ(h0 + ϵh1 + ϵ2h2 + . . . )

The factor ϵ3/2 expressing that north-south current
are much smaller that east-west current, for long wave
[cite] Then we can find the following equations, at first
order, after rescaling the equations ?? and using the
slow variables τ and ξ:−c∂ξu0 − yv0 = −∂ξh0

yu0 + ∂yh0 = 0
−c∂ξh0 + ∂ξu0 + ∂yv0 = 0

(1.2)

Then we got the following reduction :

∂yyv0 + (−1
c

− y2)v0 = 0 (1.3)

These first order equation leads to the following solu-
tion (Lindzen, 1967) :

v0(y, ξ, τ) = ∂ξη(ξ, τ)e−(1/2)y2
Hn(y)

u0(y, ξ, τ) = η(ξ, τ)[ Hn+1(y)
2(1−c) − nHn−1(y)

1+c ]e−(1/2)y2

h0(y, ξ, τ) = η(ξ, τ)[ Hn+1(y)
2(1−c) + nHn−1(y)

1+c ]e−(1/2)y2

(1.4)
With c = −1

2n+1 , Hn is the physicist Hermite polyno-
mial of order n. η(ξ, τ) is determined by the analysis
of the first order solution, by solving the KDV equa-
tion :

∂τ η + αnη∂ξη + βn∂ξξξη = 0 (1.5)

[1], where αn and βn are mode dependent constant.
The global solution regardless orders of ϵ was ex-
pressed by Holton (1973) [3], and get rid of the spuri-
ous roots for n = 0 leading to mixed Rossby-gravity
waves.

v(ξ) = Vne−(1/2)y2
Hn(ξ)

u(ξ) = i Vnϵ1/4

σ [ Hn+1(ξ)/2
ϵ1/2−k/σ

− nHn−1(y)
ϵ1/2+k/σ

]e−(1/2)ξ2

h(ξ) = −i Vnϵ−1/4

σ [ Hn+1(y)/2
ϵ1/2−k/σ

+ nHn−1(y)
ϵ1/2+k/σ

]e−(1/2)ξ2

(1.6)

Figure 1.3: The first 5 Hermite polynomials in addition
to so being an orthogonal set of polynomials and a basis
of L2(R), are satisfying the following differential equation,
useful to solve the equation ??.

∂yyHn + (−1
c

− y2)e−(1/2)y2)Hn(y) = 0

with c = −1
2n+1 Here k stands for the zonal wave

number (wave vector along latitude), and σ the non-
dimensional frequency using T . The equivalent disper-
sion equation of c = −1

2n+1 is then given by:

σ3 = σ[k2ϵ−1 + ϵ−1/2(2n + 1)] + kϵ−1 (1.7)

s As the dispersion relation is cubic in σ, we can ex-
pect three roots for each mode n, hence, we must have
three branches of dispersion relation, leading to dif-
ferent types of waves, weather dispersive or not. Fur-
thermore, in the limit n 7→ 0 the spurious roots of
the previous dispersion relation are in the equivalent
parametric equation the following:

σ = ϵ−1/2

2 ±
[

k2ϵ−1

4 + ϵ−1/2
] 1

2

These spurious roots give rise to the mixed Rossby-
gravity waves, the positive roots stands for a high-
frequency eastward moving inertia gravity wave, and
the negative one for a strongly dispersive Rossby wave
propagating westward.
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Figure 1.4: The frequency roots of the dispersion equation
are given by the fig : 1.4.a), the roots are given for a wide
range of modes [0,20], and five zonal wave numbers. The
three branches that appeared for relatively high modes are
diverging near the mode 0, which is due to the fact that
low mode are weakly dispersive, thus the phase speed
is almost constant propagating westward as indicates the
negative phase speed. This clarifies our domain of study, to
observe weakly dispersive waves, we will study the behav-
ior of the waves for n small. The fig : 1.4.b) shows the roots
for n = 1, the three behaviors of the roots are clearly visi-
ble and stand for gravity wave for the red and blue curve
and Rossby wave for the black curve, gravity waves are
non-dispersive with a phase speed cgravity

Φ = √
ga0 in the

limits of relatively small frequency and Rossby waves are
low frequency and weakly dispersive. The fig 1.4.c) shows
that Rossby waves phase speed is decreasing with the mode
number, hence to study this type of waves we will focus on
the mode n = 1 the mode n = 0, is a Rossby-gravity wave
mixed and is not of particular interest to us. Indeed, the
mode n = 0 appears to be strongly dispersive and dis-
sipative, which should imply more difficulties for setting
a reliable numerical scheme.

2 Gravity waves

Gravity waves are solutions of the basic set of shal-
low water equation where the dependency over the
Coriolis term is neglected. This leads to the fol-
lowing set :

∂tu = −g∂xh
∂tv = −g∂yh
∂th + a0(∂xu + ∂yv) = 0

(1.8)

which can be reduced to the simple wave equation with
a0 constant :

□h = 0 (1.9)

This type of wave are valid solution of to the equation
?? for high value of zonal number, i.e. for relatively
small spatial scale, in order to be able of neglecting
the Coriolis term.

Figure 1.5: The fig 1.5.a) shows the dependency of the
phase speed over the zonal wave number. Here the three
branches correspond to the same wave type as before, this
highlights the need to have large scale wave with low zonal
wave number to have weakly dispersive Rossby waves. The
fig 1.5.b is quite redundant with the fig 1.4.c) showing that
independently of the zonal wave number the mode number
plays a great role in Rossby waves phase speed. However,
the propagation is always westward, regardless of pa-
rameters.

3 Rossby waves

As the two previous figures highlight it, the Rossby
waves are weakly dispersive and propagate westward
along the equator, their phase speed is decreasing
over their zonal wave-number, and the mode number.
Hence, the first mode we will be studied here, the η
function is then given by the following equation :

η(ξ, τ) = Asech2[B(ξ − 0.395B2τ)] (1.10)
with A = 0.772B2, to be in the same scope as Boys
we will take A = 0.12 for height amplitude, so it gives
us B = 0.394. Let’s recall that

cΦ = −1
2n + 1 = −1

3
in our case. Here B stands for a zonal number like.
It’s clear that with these parameters ranges we are
definitely in the strong Rossby wave domain as k < 1
and n < 10.

Figure 1.6: Initial Rossby wave soliton n = 0 u, v and
h fields, for the parameter of η(ξ, τ) described above. As
we can see through the initial condition the wave should
propagate westward through a Coriolis pumping effect de-
scribe in the following figure. The westward movement is
induced by the initial westward motion of the u-field, which
is maintained by a Coriolis cycle in the v-field.
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Figure 1.7: This figure lays the emphasis on the v-field
pumping effect : westward nodes are driving the flow west-
ward and at the first order the eastward flow should be
driven eastward. However, through a second order pertur-
bation study, we can see that the eastward flow is driven
southward and westward flow northward at the Northern-
hemisphere, which introduce a pumping effect with a peri-
odic inversion of the v field driving nodes, in gray the east-
ward flow driving the pumping effect. However, as Boyd
underlined it, this non-linearity are creating soliton but
not solitary waves, indeed here, the soliton should develop
a wave train tail. The second order Coriolis effect is driv-
ing east nodes to north in the northern-hemisphere and to
south in the southern-hemisphere.

4 Kelvin waves

Kelvin equatorial wave are a particular solution type
of the beta-plane model discovered by Wallace and
Kousky (1968a), they are propagsting eastward and
are non dispersive such as gravity waves, with a phase
speed

cKelvin
Φ = √

ga0.

This behavior results from considering a zero verti-
cal velocity component v(ξ) = 0 in the equations
??, which leads to the following equation :

ξu = −ϵ
1
2 ∂ξh

which gives solution to the following solutions[3] :

u(ξ) = U−1e−(1/2)ξ2

v(ξ) = 0
h(ξ) = U−1 σ

s e−(1/2)ξ2
(1.11)

This is equivalent of the equation set ?? with n = −1
and V−1 = −2iϵ− 1

4 sU−1.

Figure 1.8: The dependency of the phase speed for the
mode n = −1 over the nodal wave number shows that the
roots corresponding to kelvin wave exists only for k < 1, i.e.
for large spatial scale, we find the same conclusion as be-
fore for localized spatial scale the soliton are gravitational
wave propagating westward, or eastward, for intermediate
values we observe a mixed kelvin-gravity wave.

2

Numerical methods

These specific set of Poincarré waves solution present
no damping effect, hence they are a good way
to evaluate the efficiency of a numerical integration
scheme, indeed the only source damping effect will be
due to numerical errors. This numerical error can be
evaluated by comparison of the real solution that can
be difficult to obtain, and the numerical solution. This
is why it will be relevant to use conservation of mass
and energy to evaluate the model, and to evaluate the
damping effect of the scheme.

I Integration scheme

Our scheme will be based on simple Chebyshev
spectral method on a non normalized domain, i.e.
[−1, 1]. This choice is motivated by the fact that spec-
tral method are quite precise and fast for computing
gradients, which is an important part of the shallow
water equations. Furthermore, the non normalized do-
main is necessary to be in the range of the Rossby wave
soliton in the scope of Boyd study. Indeed, from 1.10
we got the following nodal number B = .394, implies
that the wave width will be ∼ 1 this is why we have
to take a larger mesh.
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1 Spatial discretization
The spatial discretization is done with the Chebyshev-
Gauss collocation points on [−1, 1]2. Then we multiply
each component of the CGL nodes to be in the desired
range of study, by the linear change.

x′
i,j = (α cos

(
iπ

N

)
, β cos

(
jπ

N

)
)

To be in the following range : [−α, α] × [−β, β]. Here
we will choose α = 24, β = 4 This gives the following
mesh :

Figure 2.1: From this figure we can suggest the strong
mesh refinement on the edge (due to the spectral method)
will imply strong conditions on the time discretization due
to the CFL condition (∆t ≤ CN−2) imposed by the wave
propagation. We will study the CFL condition in the next
part

2 Time discretization
The time discretization is done with a simple leap-
frog like method. This consists of the 2 steps size
scheme for time derivative :

∂tu(t) ≈ u(t + ∆t) − u(t − ∆t)
2∆t

This scheme is second order accurate in time, indeed
let’s consider the following expansion :

u
(n+1)
LF = u

(n−1)
LF + 2h

(
f(nh, u

(n)
LF )
)

,

Denoting by ũ(n+1) the value of the right-hand side
obtained by inserting a smooth solution u of the ordi-
nary differential equation into the above scheme, one
gets, using a Taylor expansion :

ũ(n+1) = u(tn) + h f(tn, u(tn))

+ h2

2

(
∂f

∂t
(tn, u(tn)) + f(tn, u(tn))∂f

∂x
(tn, u(tn))

)
+ O(h3)

This matches the Taylor extension up to order 2 of
the hypothetical solution u. Hence, the local trunca-
tion error : δh

n =
h→0

O(h3). The method is then second
order accurate in time. This discretization results in
the following scheme :

un+1 = un−1 + 2∆t − g∂xhn + fvn

vn+1 = vn−1 + 2∆t − g∂yhn − fun

hn+1 = hn−1 − 2∆ta0(∂xun + ∂yvn) = 0
(2.1)

3 CFL condition

To set the convergence condition of
Courant–Friedrichs–Lewy (CFL), we have stud-
ied the behavior of the simulation through multiple
discretization in time and in space, And as exposed
before the CFL conditions is strongly impacted
by the spectral mesh with irregular spacing Fig??.
Indeed, as the mesh refinement is strong on the edge,
the time discretization must be as well, (this duration
must be less than the time for the wave to travel to
adjacent grid points). Generally the CFL condition is
given by the following equation :

C = ∆t

(
n∑

i=1

ui

∆xi

)
≤ Cmax.

With ui the i-th amplitude component of the speed.
Here we will study the westward propagating Rossby
wave soliton, hence the u1 is the only non-zero com-
ponent of the velocity. So we got the following CFL
condition :

C = ∆t

(
u1

∆x1

)
≤ Cmax.

Here ∆x1 is the distance between two adjacent grid
points, as it is not uniform we will take the minimum
distance, which is the one on the edge of the domain,
yet on the edge we have the following :

∆x = 1 − cos
(

1
N

)
≈ 1

N2 .

Furthermore, as we will study the behavior of the
mode n = 1, with a theoretical phase speed cΦ =
u1 = − 1

3 . Then we got : the following condition :
∆t ≤ 3CmaxN−2
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Figure 2.2: Here we determined Cmax = 5.532 using many,
time and space discretization, the divergence criterion was
the follwing, if the soliton height is higher than its orig-
inal height h0 = 1.12, then the simulation is said to be
non-convergent, The plotted value are the limits value of
convergence obtained for discretized ∆x, ∆t.

4 Boundary Condition
Hence, we used a Chebyshev spectral methods we can-
not use periodic boundary condition. One goal of this
study is to evaluate the phase speed of the Rossby
wave soliton, hence we must choose a wide box to
avoid boundary effects especially over the horizontal
direction, to study the behavior of the wave on a wide
time domain. For the simulation the Simple Dirich-
let boundary condition is used, i.e. h = v = u = 0
on the boundary. This is satisfying the kinematic con-
ditions and the dynamic ones : water particles will not
cross either boundary for the kinematic condition, and
the dynamic condition is a no slip one.

5 Conservation of mass and energy
The conservation of mass and energy are important to
evaluate the efficiency of the numerical scheme, indeed
let’s recall that the only damping effect is due to the
numerical error, hence the conservation of mass and
energy will be a good indicator of the efficiency of the
scheme. The mass conservation tackled the kinematic
condition, as no water particle should cross the bound-
ary, and the energy conservation is a good indicator of
the numerical error.

a Conservation of mass
The total mass is given by the following discretized
equation :

M =
∑
i,j

(a0 + hi,j)∆xi∆yj

This equation supposed a homogenous and incom-
pressible flow which is easily verified in the shallow
water field.

b Conservation of energy
The total energy is given by the following discretized
equation :

1
2

∑
i,j

(u2
ij + v2

ij + ((a0 + hij))g)(a0 + hij)∆xi∆yj

This corresponds to a simple kinetic energy plus a po-
tential energy under the same hypothesis as before.

6 Potential Vorticity
The potential Vorticity can be defined as the following
:

q = f + (∂xv − ∂yu)
h

This quantity is conserved along a stream-line in case
of non dissipation and external forces, them one can
define the potential enstrophy quantity which is the
conserved quantity indicating the strength of the po-
tential Vorticity.

Ω = h
q2

2
The discretized equation is given by the following :

Ω = 1
2

∑
i,j

hijq2
ij∆xi∆yj

The gradients will be computed using the Chebyshev
spectral method.

II Numerical results
The following simulations tackled the following cases,
the first one is the propagation of a Rossby wave al-
ready studied by [5], that will be used as a reference
for the numerical scheme. The second one is the prop-
agation of a Kelvin wave, and the third one tackled
the behavior of an unstablw wave. In this last part we
will delve into the mode separation of this wave and
the energetic aspect of this splitting.

1 Rossby soliton waves
For simulating the behavior of the ref wave we used
the following parameters :

Characteristic scales
a0 β g N ∆t

1 1 1 ns 64 2e−3

Compared to the other study the CFL conditions are
quite restrictive due to the spectral methods : [5].
However, we achieved to get a good convergence de-
spite the relatively low discretization in space.
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Figure 2.3: The westward propagation of the soliton is clearly visible through the comparaison with the initial condition
in light red. Furthermore we can see the pumping effect operate in the velocity field, with a strong westward flow,
The amplitude of the soliton have a slight damping effect, which is due to numerical error, and eastward propoagation
of the wave train [ref]. In addition to that, let’s denote that the eastward wave train is propagating much faster than the
westward soliton, let’s add that there are strongly dispersive, and should refer to Rossby-gravity wave of mode n = 0,
since they are the only Rossby-like wave propagating eastward. This wave train is due to non-linearity and constitutes the
2nd order response of the solitary wave to the Coriolis effect. It seems that the wave train are made from a succession
of soliton-like shape. Indeed, they present some strong similarities in shape with the soliton, but with a much smaller
amplitude and their propagation speed is faster, and characterized by a high dispersion. We can also highlight the sign
swap for each wave train, due to the Coriolis pumping effect, hence it inverts the sign if the v-field node periodically,
this can be explored through Boyd [1] work. These instabilities radiations are exponential function of the Rossby soliton
amplitude, this leads to an emission of radiative instabilities with amplitudes order of the n − 2 modes for n ≥ 3. For
n = 1 Williams showed that the instabilities results in radiative decays into the barotropic modes. Let’s also note that
the instabilities are not nodated directly from the soliton, but far from it, this strange behavior is also observed in other
weakly non-local solitary Φ4breather

We have found the following equation for n = 0 :
v0(y, ξ, τ) = ∂ξη(ξ, τ)e−(1/2)y2

Hn(y)
u0(y, ξ, τ) = η(ξ, τ) ± [0.03646482H0 − 0.27467347H2]e−(1/2)y2

h0(y, ξ, τ) = η(ξ, τ) ± [−0.20872123H10 + 0.2103431H2]e−(1/2)y2
(2.2)

a Conservation of mass & energy
The mass and energy conservation accounts for the
quality of the numerical scheme :

Figure 2.4: The conservation of mass and energy are quite
good, the mass is conserved up to 10−4, and the energy up
to 10−3, this is due to the numerical error, however let’s
note that the damping is quite linear during the simula-
tion, and can be compared to a simple friction coefficient
of value c = 3e−4. Which unearths some question about
the origin of this numerical damping. To avoid boundary
effects one can propose to introduce strong damping on the
boundary, this has been studied as Sponge Layer by Boyd
[2], and is a good way to avoid transients interferences in
the main flow (Rossby soliton). Indeed, here, we must limit
our study to T = 40s to avoid boundary effects, which is
quite embarrassing because we must keep a fine spatial dis-
cretization to avoid numerical dispersion, and a fine time
discretization to avoid numerical damping. So we cannot
enlarge the spatial domain to study the wave propagation
over a longer time (limit time calculation).

b Potential Vorticity

The enstrophy potential is a conserved quantity is our
case and is extremely relevant since it allows us to dive
into the potential Vorticity of the flow, since the radia-
tive instabilities should increase, the potential Vortic-
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ity, and thus the enstrophy potential. Note that, even
if the instabilities have small amplitudes in height they
have a strong impact in the v − field, when the bal-
ance between linear wave dynamics and non-linearity
is broken. Boyd introduced antisymmetric parts of
the wave. Indeed, due to instabilities the vortex pair
becomes asymmetric, and symmetrizes itself by leav-
ing the antisymmetric part behind as a wave packet.
And then the equilibrated soliton steadily translated
without change in shape or amplitude, this is an im-
portant part of the dynamics for the propagation of
the soliton, this is why it must be tackled.

Figure 2.5: As intended, the enstrophy remains quite con-
stant, with a constant increasing due to instabilities shed-
ding, this reasonable increase is due to the negligible height
of the radiations. It’s reasonable to think that the oscil-
lations in the Potential Vorticity come from successive no-
dations and dissipation of instabilities from the soliton.

Figure 2.6: The radiative shedding has a great impact
on the flow with strong barotropic modes (maybe n = 0
Rossby waves) propagating eastward with a phase speed
cΦ ≈ 1, in our case it matches with the Kelvin phase speed

c Phase speed evaluation

The phase speed is evaluated by tracking the max of
the soliton shape, we introduced a moving window
around it to get rid of the numerical dispersion, and
then we evaluate the phase speed by taking the mean
position of the moving window, this leads to the fol-
lowing :

Figure 2.7: Phase speeds evaluation

The phase speed calculated, is cΦ = −0.301, which is
quite close to the theoretical one cana = − 1

3 , this leads
to the following relative speed :

Cnum/Cana = .903

as defined by [5], this is a quite good result considering
the mesh refinement on the domain studied compared
to the mesh size used by [5], we will also lay the em-
phasis on the use of super calculator for obtaining such
good result. Furthermore, another interesting things
is that, the phase speed is not given by the maximum
of the u-field along the horizontal axis. Indeed, the
max speed of the u-field is much lower than Cnum.
This result is quite strange, how the wave can travel
faster than the velocity field allows...

2 Kelvin waves
For simulating the behavior a Kelvin wave we use the
following parameters :

Characteristic scales
a0 β g N ∆t

1 1 1 ns 64 2e−3

We will take a wave of the following form, satisfying
the Kelvin wave equation :h(x, y, t = 0) = H0

σ
k exp

(
−((kx)2 + (ly)2)

)
u(x.y, t = 0) = H0 exp

(
−((kx)2 + (ly)2)

)
v(x, y, t = 0) = 0

(2.3)
For the simulation we will take the following parame-
ter for the Kelvin wave defined by ??

Parameter
H0 k l

2 0.5 1

Note that we took k = 0.5 to be in the scope of simple
Kelvin wave fig??, indeed for k < 1 we should have a
pure kelvin wave propagating eastward with a phase
speed cΦ = √

ga0 = σ
k = 1. That’s why we have also

σ = 0.5. This finally leads to the following equation :h(x, y, t = 0) = u(x, y, t = 0) = 2 exp
(
−((0.5x)2 + (y)2)

)
u(x, y, t = 0) = h(x, y, t = 0)
v(x, y, t = 0) = 0

(2.4)
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Figure 2.8: The eastward propagating of the kelvin is clearly visible, the initial conditions are dashed plotted in black.
Furthermore, we can notice through the velocity field study that the main specificity of the kelvin wave v = 0 is verified.
There are no dispersion or deformation effects of the soliton, which is reasonable since Kelvin waves are non-dispersive.
This behavior is the result of a balance between the height gradient imposed by the Kelvin wave shape, and the Coriolis
force. Indeed, in the northern-hemisphere the height gradient projected on the north south-north axis, which tends to
spread the wave in the north direction is exactly compensate by the Coriolis force which acts in the east direction, hence
we keep V = 0. This is exactly the same in the southern-hemisphere, but with the opposite direction. This explains
why the Kelvin wave are propagating eastward, and cannot propagate westward. It highlights also the importance of
the spatial scale of the wave to have sufficient effect of Coriolis force

a Conservation of mass & energy

Figure 2.9: The conservation of mass and energy are rel-
atively good, the mass is conserved up to 2e−3, and the
energy up to 4e−3, this is due to the numerical error, in-
deed there is no dissipation is our model. Note that the
relative errors are greater than the one obtained for the
Rossby soliton, this is due to the fact that the Kelvin wave
is propagating much faster than the Rossby soliton, hence
the numerical error is more important, The CFL condition
are more restrictive, and taking the same time discretiza-
tion as for the Rossby soliton is not the optimal method.

Considering the CFL condition :

∆t ≤ CmaxN−2 ≈ 1.8e−3.

With the time step used we are quite close from the
CLF condition, which is not the case for the Rossby
soliton, this is why the numerical error is more impor-
tant for the Kelvin wave.

b Potential Vorticity

As the Rossby wave presents no south-north velocity
component, the shedding of instabilities as it was the
case for the Rossby soliton is not possible. Hence,
the Potential Vorticity should remain constant with
no oscillations, which were characteristic of radia-
tive instabilities.

Figure 2.10: As intended, the potential vorticity remains
quite constant with a relative error ≈ 2e−4. In addition to
that no oscillations are visible in the enstrophy potential,
which is a good indicator of the absence of radiative insta-
bilities, as highlighted previously.
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c Phase speed and dispersion

To evaluate the phase speed, we used a different
method than the one used for the Rossby soliton (con-
vergence issue), we fit the solution with a Kelvin wave
shape, and for each time steps we track the dispersion
and the position of the wave, this leads to the following
:

h(x0, y0) = A exp
(
− 1

2 ([k(x − x0)]2 + [l(y − y0)]2)
)

The fit provides us the wave parameter A, x0, y0, k, l,:

Figure 2.11: The speed velocity is evaluated by tracking
the position of the wave, and the dispersion is evaluated
by tracking the amplitude of the wave. The phase speed
calculated cnum

Φ = 1.000 = cana
Φ , which is the theoretical

phase speed of the Kelvin wave. Regarding the dispersion,
we have good results with a relative dispersion of 1e−5, for
zonal and nodal wave number.

3 Unstable waves
For simulating the behavior of unstable waves we used
the following parameters :

characteristic scales
a0 β g N ∆t

1 1 1 ns 64 2e−3

We call unstable wave, wave that have no velocity field
for initial condition, hence the gravity at the origin
of motion the only force applied is the gravitational
force, which tends to spread the wave in every direc-
tion. This is why we will take a wave with quite small
nodal and zonal wave number to have a great influ-
ence of the Coriolis force on the motion. We will take
a wave of the following form :h(x, y, t = 0) = H0 exp

(
−((0.5x)2 + (y)2)

)
u(x.y, t = 0) = 0
v(x, y, t = 0) = 0

(2.5)

Which is a simple kelvin wave with no west-east ve-
locity field. To simulate these waves we will take the
following parameters :

Parameter
H0 k l

2 0.5 1

Note that as the gravity is the only force applied at the
beginning, the wave should spread equally in every di-
rection, hence the mass of fluid should be equally
distributed east-west.

Figure 2.12: Contour of the flow for h ∈ [−.3, 3] and h ∈ [0.4, 1.8] for the dashed contour lines. The original
wave is split into two modes of propagation : one eastward the Rossby soliton n = 1 mode and one Kelvin
wave mode. We can assert that the westward propagating soliton has the same amplitude and phase speed, as
the Rossby soliton n = 1 studied previously, the eastward propagating soliton matches the Kelvin wave phase
speed and seems to have no dispersion. Furthermore, we have h = u with V = 0, which characterized the Kelvin
wave Fig.2.8. Radiative instabilities are also present (here in the center of the flow), and presents the same
behavior as the ones of the Rossby soliton. This splitting is majorly due to the initial conditions imposed. The
absence of east-west velocity introduces a gravitational spreading of the wave in every direction, and then an
east-west velocity, which force the wave to split into an eastward wave(the Kelvin wave) and a westward wave
(the Rossby soliton), let’s note that if we took a wave with a bigger nodal number, the splitting would have
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been into gravitational waves, and not Kelvin | Rossby waves. Finally, this splitting seems equally distributed
in energy, as it will be discussed in the next section.

Figure 2.12: Here we can see that there is no hesita-
tion regarding the type of the waves, indeed the eastward
wave presents no south-north velocity component, further-
more the wave is satisfying all the Kelvin wave proper-
ties. Where, the westward wave presents instability noda-
tions and a characteristic Rossby south-north velocity field
Fig.??.

a Conservation of mass & energy

The splitting into two east-west modes, raises the ques-
tion of the energy repartition between the two modes,
indeed the initial conditions are symmetric, and the
only force applied is the gravitational force, which is
symmetric as well. Hence the Volume and the mass
should be equally distributed between the two modes.
Lets’s note that the Kelvin wave amplitude is two
times smaller than the initial one. And note that for
this type of Gaussian wave we have the following rela-
tion for the wave volume :

V = 2πH0kl

Hence the volume of the Kelvin wave is two times
smaller than the initial one, this leads to an equipar-
tition in mass between both modes. This shows that
the kinetic Energy T is not equally distributed between
the two modes, since the Kelvin wave is 3 times faster
than the Rossby soliton. This leads to

TKelvin = 9TRossby. (2.6)

Figure 1.13 The following fig-
ure highlights very interest-
ing behavior of the splitting.
Firstly the global energy is
equally distributed between
the two modes, which leads
to the conservative proper-
ties’ ??, ?? Indeed, the
Rossby wave and the Kelvin
wave have mostly the same
total energy. However, the
very small oscillations in the
energy of these is waves is
quite surprising. Indeed,
both modes oscillate with
perfectly π/2 phase shifted.
Every time the Rossby soli-
ton reach a maximum of en-
ergy the Kelvin wave reaches
a minimum, and vice versa.
This is quite surprising, and can be explained by the
following : the instabilities shed by the Rossby soliton
are periodically reducing the soliton energy in the com-
putation, while propagating eastward influencing the
computation of Kelvin wave energy. Now let’s evaluate

the energy conservation of the global flow.

Figure 2.15: The conservation of mass and energy are quite
good, the relative difference in mass and energy is up to
6e−3. Furthermore, it seems to have no dissipation as op-
posed to the Rossby | Kelvin case, one idea to explain this
is that as seen previously the Kelvin wave gains energy
over time as opposed to the Rossby waves, hence these two
numerical errors may compensate each other. Finally, the
oscillations in energy and mass seems to correlated with
the radiative instabilities shed by the Rossby soliton.

b Potential Vorticity

Figure 2.16: The relative difference in potential enstrophy
here is about 2e−2 this relatively low metrics and the strong
oscillations can be explained respectively by the CLF con-
ditions and the radiative process of instabilities

.

c Phase speed and dispersion evaluation
To study the phase speed and the dispersion of the
Kelvin wave we used the same method as for the previ-
ous part, fitting the Kelvin wave with the appropriate
wave shape. This leads to the following :
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Figure 2.17: Phase speeds evaluation and dispersion
for the Kelvin wave : we got cnum

Φ = 1.106. This gives
Cnum/Cana = 1.106 Regarding the dissipation, we have
good result indeed, when the splitting is finished at t = 10s
we got a near constant nodal and zonal wave number equal
to the initial one, which is very interesting because only the
height of the Kelvin wave have changed.

For the Kelvin wave the dispersion & amplitudes stud-
ies lead to the following equation for the Kelvin mode
: h(x, y, t) = exp

{
(− 1

2 ([0.5(x − t)]2 + 1y2))
}

u(x, y, t) = h(x, y, t)
v(x, y, t) = 0

(2.7)

Figure 2.18: Phase speeds evaluation and dispersion
for the Rossby wave: we got cnum

Φ = −0.304. This gives
Cnum/Cana = 1.03. For the Rossby wave the dissipation
study presents a very interesting behavior, the Hermite co-
efficients eq.?? are oscillating around a steady states (hori-
zontal line in red for H2 coefficient and in black for H0 coef-
ficient) . This is mostly due to instabilities shedding, these
oscillations stands for a variation in the ratio : k/σ with a
wave deformation when a instability is shaded. However,
at steady state the ratio of the Hermite polynomials coef-
ficients is constant, satisfying the Rossby soliton equation
??.

For the Rossby wave the dispersion study leads to the
following equation for the n = 1 mode :

η(ξ, τ) = 4.589sech2[B(ξ − 0.395B2τ)] (2.8)

With exactly the same coefficients as the one obtained
by Boyd ?? for the Rossby soliton (respectively 3

4 and

3
2 for H0 and H2), with the same zonal wave number
B = 0.395.


h(x, y, t) = η(x, y) 3+6y2

4 exp
(
− 1

2 y2)
u(x, y, t) = η(x, y) −9+6y2

4 exp
(
− 1

2 y2)
v(x, y, t) = −2yBη(x, y) tanh(Bx) exp

(
− 1

2 y2)
(2.9)

3

Summery & Prospectus

In conclusion, the numerical simulations employing a
Chebyshev spectral method on a non-normalized do-
main, combined with a second-order accurate leap-
frog-like time discretization, proved effective in study-
ing the dynamics of Poincaré waves. The simula-
tions encompassed various wave scenarios, revealing
noteworthy behaviors. For the Rossby soliton, the
observed westward propagation and minimal damp-
ing align with anticipated characteristics, despite mi-
nor numerical errors. The analysis of the CFL con-
dition and the application of a boundary condition
contributed to the scheme’s robustness. Conserva-
tion of mass and energy remained crucial for evalu-
ating the numerical efficiency. The study of Kelvin
waves showcased their non-dispersive nature, exhibit-
ing eastward propagation without deformation or dis-
persion. Conservation of mass, energy, and constant
potential vorticity underscored the accuracy of the nu-
merical scheme. Unstable wave simulations elucidated
the equal distribution of energy between Rossby and
Kelvin modes, demonstrating a conservative behavior.
The observed ninefold difference in kinetic energy be-
tween the Kelvin wave and the Rossby soliton provided
valuable insights into energy partitioning dynamics. In
summary, the numerical integration scheme, charac-
terized by its spatial discretization strategy and time-
stepping approach, successfully captured the essential
features of Poincaré waves. The findings contribute
to the understanding of wave dynamics, numerical
methodologies, and the intricate interplay between dif-
ferent wave modes within the context of shallow water
equations.
Finest analysis on other wave types would be interest-
ing to study, specially for the mode splitting and the
energy repartition between modes. For example, we
could have unearthed higher Rossby mode by studying
bigger scale waves, with a stronger mesh refinement.
The use of Sponge Layer to limit computation costs,
would have been interesting to study as well. Some in-
terrogations remain about the difference in oscillation
frequency between the mass and the energy for the
Rossby wave. Furthermore, the theoretical explana-
tion of the instabilities shedding is not perfectly clear
for the n = 1 modes.
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