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Shallow water equations & Poincaré waves

fundamental in fluid dynamics

thin fluid layer compared to its
horizontal extension

Poincaré waves: frictionless and
Coriolis dependent nature

Subsets of solutions : Rossby waves,
Kelvin waves, Inertia-gravity waves

Figure: Earth view of the
equatorial domain.
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Differential equation system

From first order perturbation we got :
∂tu− fv = −g∂xh

∂tv + fu = −g∂yh

∂th+ a0(∂xu+ ∂yv) = 0

(1)

equatorial study to simply the coriolis parameter dependence

Beta plane approximation : f = βy

scale dependence of solutions behavior : study of the zonal wave
number
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Equatorial solutions

The equatorial study leads at first order to the following
solutions, using slow variable : ξ, τ :

v0(y, ξ, τ) = ∂ξη(ξ, τ)e
−(1/2)y2Hn(y)

u0(y, ξ, τ) = η(ξ, τ)[Hn+1(y)
2(1−c) − nHn−1(y)

1+c ]e−(1/2)y2

h0(y, ξ, τ) = η(ξ, τ)[Hn+1(y)
2(1−c) + nHn−1(y)

1+c ]e−(1/2)y2

(2)

With Hn the Hermite polynomials and c = − 1
2n+1 the phase

velocity of the n-th mode of propagation. And η(ξ, τ) the
envelope function, defined by KDV equation solving.
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dispersion relation

The dispersion relation can be expressed by the following :

σ3 = σ[k2ϵ−1 + ϵ−1/2(2n+ 1)] + kϵ−1 (3)

σ is the dimensionless frequency, k the zonal wave number, ϵ is a
constant depending on the system parameter.

Third order : 3 solutions
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Rossby wave frequency study

low mode
weakly
dispersive

2 types of
wave

n = 0 strongly
dispersive
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Rossby wave spatial study

large scale to
have weakly
dispersive
Rossby waves

always
westward
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First mode of rossby wave

For the first mode we got cΦ = −1/3 and :

η(ξ, τ) = Asech2[B(ξ − 0.395B2τ)] (4)
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Kelvin wave

An other type of solution is the Kelvin wave, with n = −1
defined by :


u(ξ) = U−1e

−(1/2)ξ2

v(ξ) = 0

h(ξ) = U−1
σ
k e

−(1/2)ξ2

(5)
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Integration scheme
Boundary conditions

Numerical implementation

1 No damping effect

2 Numerical errors

3 soliton is a good way to test the scheme
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Integration scheme

Chebyshev spectral method

domain [−24, 24]× [−4, 4]

To be in the scope of Boyd study
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Spatial discretization

x′i,j = (α cos(
iπ

N
), β cos(

jπ

N
))

To be in the following range
: [−α, α] × [−β, β]. Here we
will choose α = 24, β = 4 This
gives the following mesh :
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Time discretization

leap-frog like method

∂tu(t) ≈
u(t+∆t)− u(t−∆t)

2∆t
un+1 = un−1 + 2∆t− g∂xh

n + fvn

vn+1 = vn−1 + 2∆t− g∂yh
n − fun

hn+1 = hn−1 − 2∆ta0(∂xu
n + ∂yv

n) = 0

(6)
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CFL conditions

CFL conditions is strongly impacted by the spectral mesh
with irregular spacing

C = ∆t

(
n∑

i=1

ui
∆xi

)
≤ Cmax.

C = ∆t

(
u1
∆x1

)
≤ Cmax.

∆x = 1− cos(
1

N
) ≈ 1

N2
.

Hence we have the following condition : ∆t ≤ 3CmaxN
−2, we

determined Cmax = 5.532 using many, time and space
discretization
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Boundary conditions

Chebyshev spectra methods : cannot use periodic boundary
conditions

Simple Dirichlet conditions

h = u = v = 0
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Conservation of mass and energy

Mass :
M =

∑
i,j

(a0 + hi,j)∆xi∆yj

Energy :

E = 1
2

∑
i,j

(u2
ij + v2ij + ((a0 + hij))g)(a0 + hij)∆xi∆yj

Conservation of mass and energy for the simulation
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Enstrophy Conservation

Enstrophy conservation : strength of potential vorticity

q =
f+(∂xv−∂yu)

h

Ω = h q2

2

Ω = 1
2

∑
i,j hijq

2
ij∆xi∆yj
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Rossby soliton waves
Kelvin soliton waves
Unstable waves

Rossby wave

1 Rossby wave simulation

2 Kelvin wave simulation

3 unstable wave simulation

Simulation parammeters
a0 β g N ∆t

1 1 1 64 2e−3
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Rossby wave

westward propagation of the soliton

strongly dispersive instabilities

periodic shedding

one can show that these instabilities are barotropic modes
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Rossby soliton waves
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Unstable waves

Mass and energy conservation

quite good
conservation
(∼ e−4)

linear
numerical
damping

sponge layer
to avoid effect
of Boundaries
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Enstrophy Conservation

Conservative value

radiative instabilities
have great impact in
the v-field

radiative shed are
antisymmetric parts
of the wave

oscillations are
caused by successive
radiations

constant increasing
die to shedding
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Phase speed evaluation

Figure: Phase speeds evaluation

Position of a
maximum
window during
time

cΦ = −0.301

close to the 1
3

theoretical one
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Kelvin wave

Following wave satisfying the Kelvin equation
h(x, y, t = 0) = H0

σ
k exp(−((kx)2 + (ly)2))

u(x.y, t = 0) = H0 exp(−((kx)2 + (ly)2))

v(x, y, t = 0) = 0

(7)
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Kelvin wave

eastward propagation of the wave

faster than Rossby waves

no dispersion

no north-south velocity field
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Energy and mass conservation

quite
conservation :
relative
conservation
of ∼ e−3

relative error
greater than
for Rossby
waves (CFL
condition)
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Enstrophy Conservation

quite constant (2e−4)

no oscillations : no
instabilities
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Phase velocity & dispersion

Figure: Phase speed and dispersion
evaluation

Fit of the
kelvin wave by
an original
Kelvin wave

cΦ = 1.000 =
cana

relative
dispersion of
1e−5
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Unstable wave study

Kelvin like wave shape, with velocity, gravity spreading.
h(x, y, t = 0) = H0 exp(−((0.5x)2 + (y)2))

u(x.y, t = 0) = 0

v(x, y, t = 0) = 0

(8)

Note that as the gravity is the only force applied at the
beginning, the wave should spread equally in every direction,
hence the mass of fluid should be equally distributed
east-west.
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Unstable wave study

Rossby soliton n = 1 westard

Kelvin wave eastward

Radiative instabilities

energy repartition between modes
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Energy repartition between mode

VKelvin = 2πH0kl

2 times smaller than the initial
unstable wave

equally distributed Mass, but
Kelvin wave is 3 times faster

TKelvin = 9TRossby.

π/2 phase shifted
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Rossby soliton waves
Kelvin soliton waves
Unstable waves

Mass and Energy conservation

quite
conservation :
relative
conservation
of 6 ∼ e−3

no dissipation
(Rossby
decrease,
Kelvin
increase)

oscillations
correlated
with
instabilities
shed
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Rossby soliton waves
Kelvin soliton waves
Unstable waves

Enstrophy Conservation

high relative value
2e−2

CLF and instabilities



Introduction
Theoretical background

Numerical implementation
Numerical Results

Conclusion

Rossby soliton waves
Kelvin soliton waves
Unstable waves

Phase speed & dispersion

Figure: Phase speed and dispersion
evaluation of Kelvin Wave

Only the height
of the wave has
changed

cΦ = 1.106

no dispersion at
high t (zonal
and nodal wave
number
constant)
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Phase speed & dispersion

Figure: Phase speed and dispersion
evaluation of Rossby Wave

cΦ = −0.304

Hermite
coefficient
oscillating
around a steady
state

stands for
variation in the
ratio : k

σ , when
instabilities are
shed
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Conclusion

Chebyshev and 2 order integration scheme

Analyses on 3 different types of wave

Study of modes of propagation

Using mass, energy and enstrophy conservation

Study of dissipation and propagation speed of the wave
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Perspective

Study of sponge layer to avoid influence of boundary

Study of higher modes, and their repartition in energy
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