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Introduction

• Western boundary currents (e.g.,
Gulf Stream, Kuroshio) are key

drivers of global ocean circulation.

• Phenomenon: Western
Intensification.

• Pioneering theories by Stommel
(1948) and Munk (1950).

Figure – Atlantic Ocean surface

meridional velocity.
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Theoretical Background: Stommel and Munk Models

• Stommel (1948): Linear friction model.
• Munk (1950): Harmonic viscosity model.
• Governing equation:

∂ζ

∂t
+ J (Ψ, ζ) + β

∂Ψ

∂x
= ∇×z τ − r∆Ψ+ A∆ζ

• Key mechanisms:
▶ β-effect.
▶ Wind stress forcing.
▶ Frictional processes.
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Adimensionalization and Scaling

• Adimensionalization from a Sverdupian leading interior :

β
∂Ψ

∂x
= ∇×z τ

• Key parameters:

R =
|τ |
β2L3

,

ϵS =
r

βL
,

ϵM =
A

βL3

• This leads to :

∂ζ

∂t
+RJ (Ψ, ζ) +

∂Ψ

∂x
= ∇×z τ − ϵS∆Ψ+ ϵM∆ζ
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Linear System

• We consider the steady state of the system. We have :

∂Ψ

∂x
= ∇×z τ − ϵS∆Ψ+ ϵM∆ζ

• Considering in the stommel case (ϵM = 0) the matched boundary solution ΨB
and the matched interior solution ΨI we have :{

ΨB = −2 sin(y)e−
x
ϵS

ΨI = (1+ cos(x)) sin(y)

• We now have the total solutions Ψ = ΨB +ΨI :

Ψ = (1+ cos(x)) sin(y)− 2 sin(y)e−
x
ϵS

• We expect a boundary layer of typical size

δS ∝ ϵS | δM ∝ ϵ
1
3
M
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Transport in the two models

• If we take the matching case

ϵS = ϵ
1
3
M = ϵ

• We can find that the kinetic energy scaling follows :

KS ∝ ϵ−1 | KM ∝ ϵ−1

with KS < KM leading to an higher transport in the Munk model for the same
boundary size.

• Hence the two models can not unearth quantitative behavior on the western
intensification
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Non linear steady system

• We now consider the non-linear steady state of the system at small R. We
have :

∂Ψ

∂x
+RJ (Ψ, ζ) = ∇×z τ − ϵS∆Ψ+ ϵM∆ζ

• The idea is then to develop the stream function in power of R :

Ψ = Ψ0 +RΨ1 + . . .

The zero-th order is the previous linear case and the first order unearthed :

∂Ψ1

∂x
+ ϵS∆Ψ1 = J (Ψ0, ζ0)

• This is the same equation as the linear case with the jacobian that plays the
role of the wind stress, leading to :

Ψ = ΨS − 2ξR
ϵ2S

sin(2y)eξ

with ξ = x
ϵS
.
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Ψ = ΨS − 2ξR
ϵ2S

sin(2y)eξ

• This perturbated solution presents
a poleward shift of the gyre with a

concurrency near the boundary

layer between the inertial and the

viscous term :

∣∣∣ΨB1
ΨSB

∣∣∣ = R
ϵ2S
, x = δS

• At the top, contour plot of the
linear stommel solution ΨSl , with
ϵS = 0.05. At the bottom, the
perturbed stommel solution at the

bottom : ΨSnl for ϵS = 0.05 and
R = 0.005.
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• At very high R the solution is fully inertial and that will lead to a famous type
of flow : Fofonoff flow.

• For intermediate and high R numerical simulations are needed to understand
the behavior of the system. since there is no simple analytical solution.
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Numerical Implementation
• Finite difference discretization.

∆x = ∆y =
π

N − 1

∂xΨ =
Ψi+1,j −Ψi−1,j

2∆x
• Temporal scheme: Leapfrog method.

∂tΨ =
Ψn+1 −Ψn−1

2∆t

• Stability considerations:
▶ CFL, diffusive and drag conditions.

• Laplacian and Jacobian operators:

Lζij =
ζi+1,j + ζi−1,j + ζi ,j+1 + ζi ,j−1 − 4ζij

∆x2

J nij =
[
(Ψni+1,j+1 −Ψni−1,j+1)ζ

n
i ,j+1

− (Ψni+1,j−1 −Ψni−1,j−1)ζ
n
i ,j−1

]
−

[
(Ψni+1,j+1 −Ψni+1,j−1)ζ

n
i+1,j

− (Ψni−1,j+1 −Ψni−1,j−1)ζ
n
i−1,j

]
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Friction Stability

• If we consider the following discretized equation with a centered drag term :

ζn+1ij − ζn+1ij
2∆t

+RJ nij = −ϵSζnij + ϵMLζnij +∇×z τ

• growing instabilities can be observed, von-Neumann analysis leads to the
consideration of the following harmonic wave functions :

ζ = Aρe ikx , ρ = e iwt

If we restrict the study to the friction terms we get :

ρ2 + 2∆tϵMρ− 1 = 0

This will lead to one unstable mode whatever the ρ we choose :

ρ = −
[
∆tϵM +

√
(∆tϵM)2 + 1

]
< −1
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• One way to dress this issue is to
consider the previous time step

ϵSζnij → ϵSζn−1ij

• it will leads to the following
stability consideration:

ρ =
√
1− ϵM∆t < 1

with ϵM∆t ≪ 1 leading to :

ζn+1ij − ζn+1ij
2∆t

+RJ nij =− ϵSζn−1ij
+ ϵMLζnij
+∇×z τ

ζnεS
ζn−1εS

t →

K
→
Figure – Kinetic Energy Overview of

the instability induced by the central

differences by using a centered friction

term detailed in the previous section.

This is not greatly noticeable for

reasonable value of the ϵS and R
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Overview

Figure – Temporal evolution of the fields for R = 8e − 3 and ϵS = 0.05
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Results: Boundary Layer Width

• Simulations were mase using
free-slip BC

• Stommel and Munk models agree
on scaling laws.

• Numerical results:

▶ δS ∝ ϵS .

▶ δM ∝ ϵ1/3M .

δ1 δ2 π/6

0

1 steady 1

steady 2

Stommel 1

Munk 1

Stommel 2

Munk 2

x

v

Figure – Normalized meridional velocity

profiles. For different boundary layer

size in black and in blue
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Dynamics

• Difference of dynamic between the
two model with trasncient aspect

of the solutions for the Munk

cases for free-slip boundary.

• Veronis attributed this transcient
aspect to the no-slip BC. (shear

flow)

• Bryan attributed this to Rossby
free-wave in the bassin which

maches the frequency.

• Why is this transcient aspect
present in the Munk model and

not in the Stommel case

• Kinetic Energy plot for the several
boundary layer size in the matching

case : ϵ
1/3
M = ϵS .

0

5

R =8.7e-04

Munk

50 150
0

5

Stommel

0.014 0.016 0.018 0.020

t →

K
→

K
→

δ
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Dispersion Relations

• In this study we will get rid of the advection term hence we can use normal
fourrier modes :

Ψ = Ψ0e
i(ωt−kx x−ky y)

• this will leads in the Munk cases to the following dispersion :

ω =
kx

k2x + k
2
y

+ iϵM(k2x + k
2
y )

• Using the Stommel model this leads to :

ω =
kx

k2x + k
2
y

+ iϵS

• The stommel model depicts a damping for all wavelength whereas it is a priori
not the case in the Munk model.
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Damping in the Munk Model

• As we explained it is possible for
the Munk model to present a

samping of the solutions but this is

for large boundary layer width

• This allow dealing with higher
non-linearity parameter but it

should not be taken as a

quantitative result for modeling

the Gulf stream.
0 70

t →
K
→

Figure – Stabilized Kinetic energy plot

time evolution
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Discussion: Instabilities in Munk and Stommel Models

• This unstable behavior was
attributed by Munk to insufficient

numerical precision for the

damping dynamics in the boundary

layer.

• We will see further that it is
partially explaining the divergence ,

however it could have a physical

origin with unstable growing mode

at the nrthern boundary.

50 150

Re = 70

t →

K
→

Figure – Energy time evolution for

Re = 70, using ϵM = 1.2e−5 and
R = 9e−4
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Divergent behavior study

• To study this unstable growing mode base on th two dispersion relation we
have :

ωM =
kx

k2x + k
2
y

+ iϵM(k2x + k
2
y ) | ωS =

kx

k2x + k
2
y

+ iϵS

• we will suppose the following points
▶ at the beginning of the wind forcing the generated wave length are big

and there is no boundary effect in the y direction
▶ The west boundary layer will involve small scales and a disspiative

boundary in the x-direction of small scale
▶ the advection will mix the scales and will transfer small x scales to small

y-scales
▶ When the west boundary layer reach the north limit of the bassin, it will

genreate dissipation in the y-direction .
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Illustration

Figure – Contour plot of Ψ with
streamlines in plain black, for a

Re = 60 at t = 100(βL)−1s with
ϵM = 1.5e−5. Small scales structures
appear in both y and x direction with a

strong eastward boundary layer flow at

the northern boundary with a typical

kx ∼ 1− 10, corresponding to an
unstable mode.
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Munk case

• Using the previous dispersion
relation for two typical case we

unearth interesting behavior when

considering small scales and

dissipation in the y direction.

• Imaginary Frequency response
contour plot over the kx for two

different ky . On the left : we

used a purely real ky = 1. On the
right : we used a complex

ky = 30(1+ i). The black plain
line contour stands for the 0 level,

hence it is the stability threshold of

our model. The dashed contour

line are negative contour.

Andrea Combette 22 / 32



Introduction Theoretical Background Steady System study Numerical Implementation Results and Discussion Conclusion

Munk case

• We recover the Bryan argument
(the boundary layer should be

sufficiently resolved

• However one thing that we can see
is that, if the boundary layer reach

the north boundary and that it is

sufficiently small (allowing ky to be

important) this will lead to an

unstable growing mode, that is

purely physical.
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Stommel case

• The stommel case is interesting
since it is damping equally all the

frequency

• using this linear drag we lose the
Bryan constraints

• there is some unstable mode but it
is a restrict domain that is already

damped and does not extend to

pure propagating wave.
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Checking the hypothesis

• small scales structures increasing
with advection and the Re is quite

obvious and is simply given by :

v∂xv ∼ ϵM∂xxv
v2

δ
∼ ϵM

v

δ2

δ ∼ L

Re

• High-frequency modes emerge near
the northern boundary layer.

• Power spectrum unearthed the
same tendency with typical energy

injection at the boundary layer

scale.

101 102

10−11

10−9

10−7

10−5

10−3

10−1

Energy injection

δ

0.0002 0.0004 0.0006 0.0008 0.0010

Re

kz

P
(k
z
)

Figure – Spectral response for varying

Reynolds numbers.
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Checking the hypothesis

• small y scale structures increasing
with time

• time dependent power spectrum
for Re = 60, with ϵM = 1.5e−5.
The black plain line stand for a

power law of k−7.5z

101 102

10−11

10−9

10−7

10−5

10−3

10−1

Energy injection

50 100 150

t

kz

P
(k
z
)
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Checking the hypothesis

• Boundary layer northern
intensification observed. leading to

Im ky ̸= 0

• Western Boundary layer width
evolution with the Reynolds

number with ϵM = 1.2e−5. The
black dotted line stands for the

theoritical width of the boundary

layer.

0 1 2 3

0.00

0.01

0.02

0.03

0.04

δM

Northward intensification

0.0002 0.0004 0.0006 0.0008 0.0010

Re

x

δ
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Low non linear regime

• our steady linear perturbation
analysis corresponds exactly to the

stommel model with a weak

northward advection of the

boundary layer

• Both stommel and Munk
streamfunctions were average to

get rid of transcient behavior. This

shows a relatively higher transport

in the Munk case.
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Scaling of the energy

• Munk model exhibits higher kinetic
energy.

• Scaling laws:

KS ∝ δ−1S ,
KM ∝ δ−1M .

• Higher transport in Munk model.

4× 10−2 6× 10−2

2× 104

4× 104

slope=-1

R = 0.0e + 00

R = 8.0e − 04

R = 8.7e − 04

R = 9.3e − 04

R = 1.0e − 03

δ

K

Figure – Kinetic energy scaling.
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Discussion: Non-linear Regime

• Perturbative analysis:

▶ Northern intensification

observed.

▶ Inertial effects dominate at

high Rossby numbers.

• Emergence of Fofonoff solution in
high non-linear regime without a

south boundary layer (y0 = 0).
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Real Wind Stress and Coastlines

Figure – Global Atlantic velocity fields

with streamlines from copernicus

program

ΨS

Figure – Global Atlantic solutions for

stommel model with ϵS = 0.02 and
R = 9e−4
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Conclusion

• Numerical framework validated theoretical scaling laws.
• Stommel and Munk models provide complementary insights:

▶ Stommel: Simpler, stable.
▶ Munk: higher transport (closer to real one) prone to instabilities.
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