Depth study

Rayleigh study

Overturn study in the moon thermal evolution

Andrea Combette, Louis Poitevin

ENS Lyon

January 10, 2025

000

Moon formation : giant impact between Earth and a Mars-sized body

- fully molten moon
- cooling and solidification in two steps

- radiative cooling with olivine-pyroxene cumulates
- formation of anorthite crust (diffusion cooling)

Radiative cooling

• Consider only a mix of anorthite and olivine-pyroxe

$$T_{
m liq} = T_{
m OL} - mC(t), \quad T_{
m LMO} = T_{
m liq}$$

• The conservation of anorthite yields :

$$(R_M^2 - R_{co}^2)C_0 = (R_M^3 - R_{cu}^3)C(t)$$

• We end up with the following :

$$T_{\text{liq}}(t) = T_{\text{OL}} - mC_0 \frac{R_M^3 - R_{\text{co}}^3}{R_M^3 - R_{\text{cu}}(t)^3}$$

Depth study

Rayleigh study

Radiative cooling

- Assuming that T_{cu(r)} = T_{liq}(R_{cu}(t) = r) due to the short time scale of the first stage (neglect diffusion in the cumulate)
 - ▶ $10^2 \sim 10^3 yr$
 - instable temperature profile
- When $C(t) = C_E$ the anorthite crust is formed and slow down the cooling
- The cristiallisation of the olivine is then slowed down (we can consider a constant width cumulates layer)
- However, this is instable density profile

Figure – Instable temperature profile leading to overturn and increasing in flux

Rayleigh study

Modeling of the system

- We are interested in the dynamic of this cumulate layer at the beginning of the second stage
- The flux will increase and the temperature profile will be stable
- Convection in the 2d slab **Boussinesq** approximation with free slip boundary layer

$$\begin{cases} \vec{\nabla} \cdot \vec{u} = 0\\ \rho_0 \frac{\partial \vec{u}}{\partial t} + \vec{u} \cdot \vec{\nabla} \vec{u} = \vec{\nabla} P + \eta \nabla^2 \vec{u} + \rho \vec{g} \\ \frac{\partial T}{\partial t} + \vec{u} \cdot \vec{\nabla} T = \kappa \nabla^2 T\\ \rho = \rho_0 (1 - \alpha (T - T_0)) \end{cases}$$

We expect to have thermal conduction driven Rayleigh-Bénard convection. This will leads to the following rescaling, filtering out the short time-scales:

$$\hat{x}, \hat{y} = \frac{\hat{x}}{d}, \frac{\hat{y}}{d} \quad \hat{z} = \frac{z}{d} + \frac{1}{2} \quad \hat{\theta} = \frac{\theta}{\Delta T_0} \quad \hat{t} = \frac{t\kappa}{d^2} \quad \hat{\rho} = \frac{pd^2}{\kappa\eta}$$

Rayleigh study

Modeling of the system

• We end up with the following dimensionless equations dropping the hats and considering infinite Prandtl number :

$$\begin{cases} \vec{\nabla} \cdot \vec{u} = 0\\ \frac{1}{\Pr} \frac{Du}{Dt} = -\vec{\nabla}\rho + \nabla^2 \vec{u} + Ra\theta \vec{e}_z = 0\\ \frac{D\theta}{Dt} = \nabla^2 \theta \end{cases}$$

With $Ra = \frac{\rho_0 g \alpha \Delta T d^3}{\kappa \eta}$ and $Pr = \frac{\eta}{\kappa \rho_0}$. The infinite Prandtl approximation leads to a momentum dissipation greater than the thermal dissation, the velocity field will then react immediately to a change of temperatures.

• The following boundary conditions are considered :

• $\vec{u} \cdot \vec{e}_z = 0$ on z = 0, 1 (impermeability)

 $rac{\partial \theta}{\partial z} = 0$ on z = 0 (negligeable flux induced by the core)

•
$$\tau^{x} = 0$$
 on $z = 0, 1$ (Free-slip)

• $\theta = 0$ on z = 1 (Constant Temperature of the LMO)

Rayleigh study

- The goal of this project is to study the evolution of the cumulate layer at the beginning of the second stage of the moon cooling depending on the **temperature profiles**and on the range of **Ra**
- Study of the depth of the temperature profile and its impact on the thermal flux
- The moon cumulates Ra should be in the range $10^5 \sim 10^6$
 - impact on the dynamics
 - this overturn flux is usually taken as : $\Phi_{OV} \sim e^{-rac{t}{ au_{OV}}}$
 - study this scaling law

Numerical Setup

- Semi spectral method for convection-diffusion equations
- Fourrier basis for the x basis (Periodic Boundary conditions)
- Chebyshev basis for the z basis (Allowing non-periodic boundary conditions)
- CGL nodes for the Chebyshev basis and equally spaced nodes for the Fourier basis
- Time integration using a second order Runge kutta scheme with adaptive time stepping

Rayleigh study

Initial Thermal conditions

Figure – Initial temperature profile

 we ensure that the integral over all the depth is constant for all profile ensuring a constant amount of energy among all the profiles

$$T(z > e) = T_e + \frac{1-z}{e(2-e)}$$

000

Depth study

Rayleigh study

Average temperature - Nusselt & Reynolds

Figure – Average temperature profile Nusselt and Reynolds number for $Ra = 7.10^4$

Average temperature, Reynolds number and Nusselt number as function of time and depth e for Ra = 7.00e+05

Depth study

Rayleigh study

Average temperature - Nusselt & Reynolds

Horizontally averaged temperature for all gradient with $Ra=\!7.00\mathrm{e}\!+\!04$

Horizontally averaged temperature for all gradient with $Ra=\!7.00\mathrm{e}{+}05$

Depth study

Rayleigh study

Overturn-Flux profile

Horizontally averaged heat flux for all gradient with $Ra=\!7.00\mathrm{e}{+}04$

Horizontally averaged heat flux for all gradient with $Ra=\!7.00\mathrm{e}{+}05$

Motivation and Background $\frac{8}{88}$

 $\operatorname{Depth}_{\circ}$ study

ğğ

Rayleigh study

Overturn-Flux profile

surface heat flux for all gradient with Ra = 7.00e+04

Figure – Surface heat flux for $Ra = 7.10^4$

surface heat flux for all gradient with Ra = 7.00e+05

Figure – Surface heat flux for $Ra = 7.10^5$

Depth study

Rayleigh study

Overturn and burst duration

Evolution of overturn time and release time for different initial thermal profil with Ra = 7.00e+04

Evolution of overturn time and release time for different initial thermal profil with Ra = 7.00e+05

Depth of the linear part of initial thermal profile

Rayleigh study

Overturn and burst duration

Evolution of overturn date for different initial thermal profil with Ra = 7.00e+04

Evolution of overturn date for different initial thermal profil with Ra = 7.00e+05

Depth study

ğĕ

Figure – Overturn time for $Ra = 7.10^5$

Figure – Overturn time for $Ra = 7.10^4$

Motivation and Background Depth study [§] [§]

Rayleigh study

Maximum Heat flux density in cumulates

Figure – Maximum heat flux contribution for $Ra = 7.10^4$ and 7.10^5

Motivation and Background ${{}_{{\mathbb S}{\mathbb S}}^{\otimes}}$

Depth study

Rayleigh study

Loss of energy

Depth study

Rayleigh study

Overturn and Burst duration

- Since the the overturn time and duration should be dependant of the convective time, the overturn time is dependant of the Rayleigh.
- More precisely, we expect the following scaling law :

$$au_{
m OV} \sim au_{
m conv} = {
m Ra}^{-1} au_{
m diffusion}$$

• For this we can study the total flux : $\Phi_{tot}(z=0) = V\theta - \partial_z \theta$

Depth study

Rayleigh study

Overturn and Burst duration

The overturn time and the duration of the overturn dependancy are plotted bellows :

 $\it Figure$ – The overturn characteristic times are only convective scaling like predicted as $\rm Ra^{-1},$ a diffusive behavior would have led to a scaling like $\it Ra^1$

Overturn and Burst duration

• One could suggest to rescale the time using the Rayleigh number to have comparable dynamics

$$\hat{t} = \mathsf{Ra} \cdot t$$

 This unearthes very close dynamics for the different Rayleighs which seems to play a role only on the intensity of the convection events.

Rayleigh study

Nusselt and Total Heat flux

- Next, we have to study the impact of the Ra on the intensity of the dynamics
- for large Rayleigh with overturn free dynamics one could unearth that the adimensional flux Nu verifies : $Nu \sim \text{Ra}^{\frac{1}{3}}$
- The nusselt number can be expressed as the ratio of the total flux and the condictive flux

$$Nu = \frac{\Phi_{\text{tot}}}{\Phi_{\text{cond}}} = \frac{V\theta - \partial_z \Theta}{\partial_z \Theta}$$

• in our study we have at z = 0, v = 0, we deduce easily that Nu = 1, and that the flux is only diffusive at the boundary. The study of the total flux will then be much more intesting.

Rayleigh study

Nusselt and Total Heat flux

Figure – Φ^{max} scaling over the Raynold. We recover the previous law $Nu = Ra^{\frac{1}{3}}$

Modal analysis

Rayleigh study

Modal analysis

- One could also study the convection events we saw before with multiple overturns occuring.
- For that we have to recall the first instable modes has a wavevector of value :
 - k = 2.23 for the free-free Boundary conditions
 - k = 3.12 for the rigid-rigid Boundary conditions (even modes)

Figure – Vorticity profile before the first overturn, it seems that the BC are rigid (*Pr* infinite and $\theta(z = 0) = 0$

Depth study

Rayleigh study

Modal analysis

Fields after the first overturn

Depth stud

Rayleigh study

Modal analysis

Fields just before the second overturn

Modal analysis

• All the natural frequencies of the system are then multiples of the first instable mode, implying a cascade of convective cell fusion or division at different scales (This explains the charcteristic cooling of the system that is not exponential).

Cooling rate

• The cooling is localized in a boundary layer at the top of the Box where the buoyancy is equilibrated by the diffusion processes.

$$\delta \tau = \frac{L}{\mathrm{Ra}^{\frac{1}{3}}}$$

Cooling rate

• Still have to determine the decaying scaling

