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Overview

• Moon formation : giant impact
between Earth and a Mars-sized

body

• fully molten moon

• cooling and solidification in two
steps

▶ radiative cooling with

olivine-pyroxene cumulates

▶ formation of anorthite crust

(diffusion cooling)

Figure – Moon formation
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Radiative cooling

• Consider only a mix of anorthite and olivine-pyroxe
Tliq = TOL −mC(t), TLMO = Tliq

• The conservation of anorthite yields :
(R2M − R2co)C0 = (R3M − R3cu)C(t)

• We end up with the following :

Tliq(t) = TOL −mC0
R3M − R3co
R3M − Rcu(t)3

Figure – Phase diagram Olivine-pyrox /

Anorthite
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Radiative cooling

• Assuming that Tcu(r) = Tliq(Rcu(t) = r) due to the short time scale of
the first stage (neglect diffusion in the cumulate)
▶ 102 ∼ 103yr
▶ instable temperature profile

• When C(t) = CE the anorthite crust is formed and slow down the
cooling

• The cristiallisation of the olivine is then slowed down (we can consider a
constant width cumulates layer)

• However, this is instable density profile

Figure – Instable temperature profile

leading to overturn and increasing in

flux
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Modeling of the system

• We are interested in the dynamic of this cumulate layer at the beginning
of the second stage

• The flux will increase and the temperature profile will be stable
• Convection in the 2d slab Boussinesq approximation with free slip
boundary layer 

∇⃗ · u⃗ = 0
ρ0
∂u⃗
∂t

+ u⃗ · ∇⃗u⃗ = ∇⃗P + η∇2u⃗ + ρg⃗
∂T
∂t

+ u⃗ · ∇⃗T = κ∇2T
ρ = ρ0(1− α(T − T0))

We expect to have thermal conduction driven Rayleigh-Bénard

convection. This will leads to the following rescaling, filtering out the

short time-scales:

x̂ , ŷ =
x̂

d
,
ŷ

d
ẑ =

z

d
+
1

2
θ̂ =

θ

∆T0
t̂ =
tκ

d2
p̂ =

pd2

κη
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Modeling of the system

• We end up with the following dimensionless equations dropping the hats
and considering infinite Prandtl number :

∇⃗ · u⃗ = 0
1
Pr
Du
Dt

= −∇⃗p +∇2u⃗ + Raθe⃗z = 0
Dθ
Dt

= ∇2θ

With Ra = ρ0gα∆Td
3

κη
and Pr = η

κρ0
. The infinite Prandtl approximation

leads to a momentum dissipation greater than the thermal dissation, the

velocity field will then react immediately to a change of temperatures.

• The following boundary conditions are considered :
▶ u⃗ · e⃗z = 0 on z = 0, 1 (impermeability)
▶ ∂θ

∂z
= 0 on z = 0 (negligeable flux induced by the core)

▶ τx = 0 on z = 0, 1 (Free-slip)
▶ θ = 0 on z = 1 (Constant Temperature of the LMO)
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Motivation

• The goal of this project is to study the evolution of the cumulate layer
at the beginning of the second stage of the moon cooling depending on

the temperature profilesand on the range of Ra

• Study of the depth of the temperature profile and its impact on the
thermal flux

• The moon cumulates Ra should be in the range 105 ∼ 106

▶ impact on the dynamics

▶ this overturn flux is usually taken as : ΦOV ∼ e
− t
τOV

▶ study this scaling law
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Numerical Setup

• Semi spectral method for convection-diffusion equations
• Fourrier basis for the x basis (Periodic Boundary conditions)
• Chebyshev basis for the z basis (Allowing non-periodic boundary
conditions)

• CGL nodes for the Chebyshev basis and equally spaced nodes for the
Fourier basis

• Time integration using a second order Runge kutta scheme with
adaptive time stepping
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Initial Thermal conditions

Figure – Initial temperature profile

• we ensure that the integral over
all the depth is constant for all

profile ensuring a constant

amount of energy among all the

profiles

•

T (z > e) = Te +
1− z
e(2− e)

Andrea Combette, Louis Poitevin 9 / 29



Motivation and Background Depth study Rayleigh study

Average temperature - Nusselt & Reynolds

Figure – Average temperature profile

Nusselt and Reynolds number for

Ra = 7.104

Figure – Average temperature profile

Nusselt and Reynolds number for

Ra = 7.105
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Average temperature - Nusselt & Reynolds

Figure – Overturn for Ra = 7.104 Figure – Overturn for Ra = 7.105
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Overturn-Flux profile

Figure – Overturn flux for Ra = 7.104 Figure – Overturn flux for Ra = 7.105
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Overturn-Flux profile

Figure – Surface heat flux for

Ra = 7.104
Figure – Surface heat flux for

Ra = 7.105
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Overturn and burst duration
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Overturn and burst duration

Figure – Overturn time for Ra = 7.104 Figure – Overturn time for Ra = 7.105
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Maximum Heat flux density in cumulates

Figure – Maximum heat flux contribution for Ra = 7.104 and 7.105
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Loss of energy
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Overturn and Burst duration

• Since the the overturn time and duration should be dependant of the
convective time, the overturn time is dependant of the Rayleigh.

• More precisely, we expect the following scaling law :

τOV ∼ τconv = Ra−1τdiffusion
• For this we can study the total flux : Φtot(z = 0) = V θ − ∂zθ

Figure – Overturn

Dynamics for different

Ra.
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Overturn and Burst duration

The overturn time and the duration of the overturn dependancy are plotted bellows :

Figure – The overturn characteristic times are only convective scaling like predicted

as Ra−1, a diffusive behavior would have led to a scaling like Ra1
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Overturn and Burst duration

• One could suggest to rescale the time using the Rayleigh number to
have comparable dynamics

t̂ = Ra · t

• This unearthes very close dynamics for the different Rayleighs which
seems to play a role only on the intensity of the convection events.

Figure – Rescaled

overturn dynamics for

different Ra.
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Nusselt and Total Heat flux

• Next, we have to study the impact of the Ra on the intensity of the
dynamics

• for large Rayleigh with overturn free dynamics one could unearth that
the adimensional flux Nu verifies : Nu ∼ Ra

1
3

• The nusselt number can be expressed as the ratio of the total flux and
the condictive flux

Nu =
Φtot
Φcond

=
V θ − ∂zΘ
∂zΘ

• in our study we have at z = 0, v = 0, we deduce easily that Nu = 1,
and that the flux is only diffusive at the boundary. The study of the

total flux will then be much more intesting.
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Nusselt and Total Heat flux

Figure – Φmax scaling over the Raynold. We recover the previous law Nu = Ra
1
3
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Modal analysis

Figure – Temporal evolution of the fields
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Modal analysis

• One could also study the convection events we saw before with multiple
overturns occuring.

• For that we have to recall the first instable modes has a wavevector of
value :
▶ k = 2.23 for the free-free Boundary conditions
▶ k = 3.12 for the rigid-rigid Boundary conditions (even modes)

Figure – Vorticity

profile before the first

overturn, it seems that

the BC are rigid (Pr

infinite and

θ(z = 0) = 0
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Modal analysis

Fields after the first overturn
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Modal analysis

Fields just before the second overturn
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Modal analysis

• All the natural frequencies of the system are then multiples of the first
instable mode, implying a cascade of convective cell fusion or division at

different scales (This explains the charcteristic cooling of the system

that is not exponential).

Figure – Vorticity

profile after the first

overturn, the BC are

still rigid
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Cooling rate

• The cooling is localized in a boundary layer at the top of the Box where
the buoyancy is equilibrated by the diffusion processes.

δT =
L

Ra
1
3

Figure – Temperature

profile and boundary

layer
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Cooling rate

• Still have to determine the decaying scaling
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